Do you want to publish a course? Click here

A sharp diameter bound for unipotent groups of classical type over Z/pZ

203   0   0.0 ( 0 )
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

The unipotent subgroup of a finite group of Lie type over a prime field Z/pZ comes equipped with a natural set of generators; the properties of the Cayley graph associated to this set of generators have been much studied. In the present paper, we show that the diameter of this Cayley graph is bounded above and below by constant multiples of np + n^2 log p, where n is the rank of the associated Lie group. This generalizes a result of the first author, which treated the case of SL_n(Z/pZ). (Keywords: diameter, Cayley graph, finite groups of Lie type. AMS classification: 20G40, 05C25)



rate research

Read More

For a finite group $G$, let $mathrm{diam}(G)$ denote the maximum diameter of a connected Cayley graph of $G$. A well-known conjecture of Babai states that $mathrm{diam}(G)$ is bounded by ${(log_{2} |G|)}^{O(1)}$ in case $G$ is a non-abelian finite simple group. Let $G$ be a finite simple group of Lie type of Lie rank $n$ over the field $F_{q}$. Babais conjecture has been verified in case $n$ is bounded, but it is wide open in case $n$ is unbounded. Recently, Biswas and Yang proved that $mathrm{diam}(G)$ is bounded by $q^{O( n {(log_{2}n + log_{2}q)}^{3})}$. We show that in fact $mathrm{diam}(G) < q^{O(n {(log_{2}n)}^{2})}$ holds. Note that our bound is significantly smaller than the order of $G$ for $n$ large, even if $q$ is large. As an application, we show that more generally $mathrm{diam}(H) < q^{O( n {(log_{2}n)}^{2})}$ holds for any subgroup $H$ of $mathrm{GL}(V)$, where $V$ is a vector space of dimension $n$ defined over the field $F_q$.
We establish some results on the structure of the geometric unipotent radicals of pseudo-reductive k-groups. In particular, our main theorem gives bounds on the nilpotency class of geometric unipotent radicals of standard pseudo-reductive groups, which are sharp in many cases. A major part of the proof rests upon consideration of the following situation: let k be a purely inseparable field extension of k of degree p^e and let G denote the Weil restriction of scalars R_{k/k}(G) of a reductive k-group G. When G= R_{k/k}(G) we also provide some results on the orders of elements of the unipotent radical RR_u(G_{bar k}) of the extension of scalars of G to the algebraic closure bar k of k.
Fixing an arithmetic lattice $Gamma$ in an algebraic group $G$, the commensurability growth function assigns to each $n$ the cardinality of the set of subgroups $Delta$ with $[Gamma : Gamma cap Delta] [Delta: Gamma cap Delta] = n$. This growth function gives a new setting where methods of F. Grunewald, D. Segal, and G. C. Smiths Subgroups of finite index in nilpotent groups apply to study arithmetic lattices in an algebraic group. In particular, we show that for any unipotent algebraic $mathbb{Z}$-group with arithmetic lattice $Gamma$, the Dirichlet function associated to the commensurability growth function satisfies an Euler decomposition. Moreover, the local parts are rational functions in $p^{-s}$, where the degrees of the numerator and denominator are independent of $p$. This gives regularity results for the set of arithmetic lattices in $G$.
For each finite classical group $G$, we classify the subgroups of $G$ which act transitively on a $G$-invariant set of subspaces of the natural module, where the subspaces are either totally isotropic or nondegenerate. Our proof uses the classification of the maximal factorisations of almost simple groups. As a first application of these results we classify all point-transitive subgroups of automorphisms of finite thick generalised quadrangles.
We study reductive subgroups $H$ of a reductive linear algebraic group $G$ -- possibly non-connected -- such that $H$ contains a regular unipotent element of $G$. We show that under suitable hypotheses, such subgroups are $G$-irreducible in the sense of Serre. This generalizes results of Malle, Testerman and Zalesski. We obtain analogous results for Lie algebras and for finite groups of Lie type. Our proofs are short, conceptual and uniform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا