Do you want to publish a course? Click here

The spectral dimension of generic trees

96   0   0.0 ( 0 )
 Added by Thordur Jonsson
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We define generic ensembles of infinite trees. These are limits as $Ntoinfty$ of ensembles of finite trees of fixed size $N$, defined in terms of a set of branching weights. Among these ensembles are those supported on trees with vertices of a uniformly bounded order. The associated probability measures are supported on trees with a single spine and Hausdorff dimension $d_h =2$. Our main result is that their spectral dimension is $d_s=4/3$, and that the critical exponent of the mass, defined as the exponential decay rate of the two-point function along the spine, is 1/3.



rate research

Read More

We introduce an ensemble of infinite causal triangulations, called the uniform infinite causal triangulation, and show that it is equivalent to an ensemble of infinite trees, the uniform infinite planar tree. It is proved that in both cases the Hausdorff dimension almost surely equals 2. The infinite causal triangulations are shown to be almost surely recurrent or, equivalently, their spectral dimension is almost surely less than or equal to 2. We also establish that for certain reduc
We consider aspects of tree and one-loop behavior in a generic 4d EFT of massless scalars, fermions, and vectors, with a particular eye to the high-energy limit of the Standard Model EFT at operator dimensions 6 and 8. First, we classify the possible Lorentz structures of operators and the subset of these that can arise at tree-level in a weakly coupled UV completion, extending the tree/loop classification through dimension 8 using functional methods. Second, we investigate how operators contribute to tree and one-loop helicity amplitudes, exploring the impact of non-renormalization theorems through dimension 8. We further observe that many dimension 6 contributions to helicity amplitudes, including rational parts, vanish exactly at one-loop level. This suggests the impact of helicity selection rules extends beyond one loop in non-supersymmetric EFTs.
We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation and to the gauge structure of the theory. We then argue, following t Hoofts conjecture, that noncommutative spectral geometry classical construction carries implicit in its feature of the doubling of the algebra the seeds of quantization.
177 - Pablo Pisani 2007
The asymptotic expansion of the heat-kernel for small values of its argument has been studied in many different cases and has been applied to 1-loop calculations in Quantum Field Theory. In this thesis we consider this asymptotic behavior for certain singular differential operators which can be related to quantum fields on manifolds with conical singularities. Our main result is that, due to the existence of this singularity and of infinitely many boundary conditions of physical relevance related to the admissible behavior of the fields on the singular point, the heat-kernel has an unusual asymptotic expansion. We describe examples where the heat-kernel admits an asymptotic expansion in powers of its argument whose exponents depend on external parameters. As far as we know, this kind of asymptotics had not been found and therefore its physical consequences are still unexplored.
178 - Bertrand Eynard 2017
In this series of lectures, we (re)view the geometric method that reconstructs, from a geometric object: the spectral curve, an integrable system, and in particular its Tau function, Baker-Akhiezer functions and current amplitudes, all having an interpretation as CFT conformal blocks. The construction identifies Hamiltonians with cycles on the curve, and times with periods (integrals of forms over cycles). All the integrable structure is formulated in terms of homology of contours, the phase space is a space of cycles where the symplectic form is the intersection, the Hirota operator is a degree 2 second-kind cycle, a Sato shift is an addition of a 3rd kind cycle, the Hirota equations amount to saying that merging 3rd kind cycles (monopoles) yields a 2nd kind cycle (dipole). The lecture is divided into 3 parts: 1) classical case, perturbative: the spectral curve is a ramified cover of a base Riemann surface -- with some additional structure -- and the integrable system is defined as a formal power series of a small dispersion parameter $epsilon$. 2) dispersive classical case, non perturbative: the spectral curve is defined not as a ramified cover (which would be a bundle with discrete fiber), but as a vector bundle -- whose dispersionless limit consists in chosing a finite set of vectors in each fiber. 3) non-commutative case, and perturbative. The spectral curve is here a non-commutative surface, whose geometry will be defined in lecture III. 4) the full non-commutative dispersionless theory is under development is not presented in these lectures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا