Alternative structures and bi-Hamiltonian systems on a Hilbert space


Abstract in English

We discuss transformations generated by dynamical quantum systems which are bi-unitary, i.e. unitary with respect to a pair of Hermitian structures on an infinite-dimensional complex Hilbert space. We introduce the notion of Hermitian structures in generic relative position. We provide few necessary and sufficient conditions for two Hermitian structures to be in generic relative position to better illustrate the relevance of this notion. The group of bi-unitary transformations is considered in both the generic and non-generic case. Finally, we generalize the analysis to real Hilbert spaces and extend to infinite dimensions results already available in the framework of finite-dimensional linear bi-Hamiltonian systems.

Download