Do you want to publish a course? Click here

Stefans problem and beyond

61   0   0.0 ( 0 )
 Added by Pribis Y.
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We argue that the celebrated Stefan condition on the moving interphase, accepted in mathematical physics up to now, can not be imposed if energy sources are spatially distributed in the volume. A method based on Tikhonov and Samarskiis ideas for numerical solution of the problem is developed. Mathematical modelling of energy relaxation of some processes useful in modern ion beam technologies is fulfilled. Necessity of taking into account effects completely outside the Stefan formulation is demonstrated.



rate research

Read More

We show that Tsirelsons problem concerning the set of quantum correlations and Connes embedding problem on finite approximations in von Neumann algebras (known to be equivalent to Kirchbergs QWEP conjecture) are essentially equivalent. Specifically, Tsirelsons problem asks whether the set of bipartite quantum correlations generated between tensor product separated systems is the same as the set of correlations between commuting C*-algebras. Connes embedding problem asks whether any separable II$_1$ factor is a subfactor of the ultrapower of the hyperfinite II$_1$ factor. We show that an affirmative answer to Connes question implies a positive answer to Tsirelsons. Conversely, a positve answer to a matrix valued version of Tsirelsons problem implies a positive one to Connes problem.
118 - S. De Leo 2002
We discuss the (right) eigenvalue equation for $mathbb{H}$, $mathbb{C}$ and $mathbb{R}$ linear quaternionic operators. The possibility to introduce an isomorphism between these operators and real/complex matrices allows to translate the quaternionic problem into an {em equivalent} real or complex counterpart. Interesting applications are found in solving differential equations within quaternionic formulations of quantum mechanics.
97 - Valery B. Morozov 2013
Problem solutions in area of diffraction and of scattering theory are considered from one point of view. The method common for them is based on approximate orthogonality of solution constituents, which oscillate on a body long frontier. Method potentiality is discussed.
131 - Yulin Lin 2010
This paper gives a new and short proof of existence and uniqueness of the Polubarinova-Galin equation. The existence proof is an application of the main theorem in Lins paper. Furthermore, we can conclude that every strong solution can be approximated by many strong polynomial solutions locally in time.
We describe solutions of the matrix equation $exp(z(A-I_n))=A$, where $z in {mathbb C}$. Applications in quantum computing are given. Both normal and nonnormal matrices are studied. For normal matrices, the Lambert W-function plays a central role.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا