No Arabic abstract
The weak-field expansion of the charged fermion propagator under a uniform magnetic field is studied. Starting from Schwingers proper-time representation, we express the charged fermion propagator as an infinite series corresponding to different Landau levels. This infinite series is then reorganized according to the powers of the external field strength $B$. For illustration, we apply this expansion to $gammato ubar{ u}$ and $ uto ugamma$ decays, which involve charged fermions in the internal loop. The leading and subleading magnetic-field effects to the above processes are computed.
We show that in a spontaneously broken effective gauge field theory, quantized in a general background $R_xi$-gauge, also the background fields undergo a non-linear (albeit background-gauge invariant) field redefinition induced by radiative corrections. This redefinition proves to be crucial in order to renormalize the coupling constants of gauge-invariant operators in a gauge-independent way. The classical background-quantum splitting is also in general non-linearly deformed (in a non gauge-invariant way) by radiative corrections. Remarkably, such deformations vanish in the Landau gauge, to all orders in the loop expansion.
In this work, dispersion relations of $pi^0$ and $pi^{pm}$ have been studied in vacuum in the limit of weak external magnetic field using a phenomenological pion-nucleon $(pi N)$ Lagrangian. For our purpose, we have calculated the results up to one loop order in self energy diagrams with the pseudoscalar $(PS)$ and pseudovector $(PV)$ pion-nucleon interactions. By assuming weak external magnetic field it is seen that the effective mass of pion gets explicit magnetic field dependence and it is modified significantly for the case of PS coupling. However, for the PV coupling, only a modest increase in the effective mass is observed. These modified dispersion relations due to the presence of the external field can have substantial influence in the phenomenological aspect of the mesons both in the context of neutron stars as well as relativistic heavy ion collisions.
We develop the technique of inverse Mellin transform for processes occurring in a background magnetic field. We show by analyticity that the energy (momentum) derivatives of a field theory amplitude at the zero energy (momentum) is equal to the Mellin transform of the absorptive part of the amplitude. By inverting the transform, the absorptive part of the amplitude can be easily calculated. We apply this technique to calculate the photon polarization function in a background magnetic field.
We demonstrate how one can construct renormalizable perturbative expansion in formally nonrenormalizable higher dimensional field theories. It is based on $1/N_f$-expansion and results in a logarithmically divergent perturbation theory in arbitrary high space-time dimension. First, we consider a simple example of $N$-component scalar filed theory and then extend this approach to Abelian and non-Abelian gauge theories with $N_f$ fermions. In the latter case, due to self-interaction of non-Abelian fields the proposed recipe requires some modification which, however, does not change the main results. The resulting effective coupling is dimensionless and is running in accordance with the usual RG equations. The corresponding beta function is calculated in the leading order and is nonpolynomial in effective coupling. It exhibits either UV asymptotically free or IR free behaviour depending on the dimension of space-time. The original dimensionful coupling plays a role of a mass and is also logarithmically renormalized. We analyze also the analytical properties of a resulting theory and demonstrate that in general it acquires several ghost states with negative and/or complex masses. In the former case, the ghost state can be removed by a proper choice of the coupling. As for the states with complex conjugated masses, their contribution to physical amplitudes cancels so that the theory appears to be unitary.
We study large $N$ 2+1 dimensional fermions in the fundamental representation of an $SU(N)_k$ Chern Simons gauge group in the presence of a uniform background magnetic field for the $U(1)$ global symmetry of this theory. The magnetic field modifies the Schwinger Dyson equation for the propagator in an interesting way; the product between the self energy and the Greens function is replaced by a Moyal star product. Employing a basis of functions previously used in the study of non-commutative solitons, we are able to exactly solve the Schwinger Dyson equation and so determine the fermion propagator. The propagator has a series of poles (and no other singularities) whose locations yield a spectrum of single particle energies at arbitrary t Hooft coupling and chemical potential. The usual free fermion Landau levels spectrum is shifted and broadened out; we compute the shifts and widths of these levels at arbitrary tHooft coupling. As a check on our results we independently solve for the propagators of the conjecturally dual theory of Chern Simons gauged large $N$ fundamental Wilson Fisher bosons also in a background magnetic field but this time only at zero chemical potential. The spectrum of single particle states of the bosonic theory precisely agrees with those of the fermionic theory under Bose-Fermi duality.