Do you want to publish a course? Click here

Solutions to Knizhnik-Zamolodchikov equations with coefficients in non-bounded modules

69   0   0.0 ( 0 )
 Added by Fedor Malikov
 Publication date 1993
  fields
and research's language is English




Ask ChatGPT about the research

We explicitly write dowm integral formulas for solutions to Knizhnik-Zamolodchikov equations with coefficients in non-bounded -- neither highest nor lowest weight -- $gtsl_{n+1}$-modules. The formulas are closely related to WZNW model at a rational level.



rate research

Read More

160 - D. Ivanov 1994
Knizhnik-Zamolodchikov-Bernard equations for twisted conformal blocks on compact Riemann surfaces with marked points are written explicitly in a general projective structure in terms of correlation functions in the theory of twisted b-c systems. It is checked that on the moduli space the equations provide a flat connection with the spectral parameter.
We propose a new method to compute connection matrices of quantum Knizhnik-Zamolodchikov equations associated to integrable vertex models with super algebra and Hecke algebra symmetries. The scheme relies on decomposing the underlying spin representation of the affine Hecke algebra in principal series modules and invoking the known solution of the connection problem for quantum affine Knizhnik-Zamolodchikov equations associated to principal series modules. We apply the method to the spin representation underlying the $mathcal{U}_qbigl(hat{mathfrak{gl}}(2|1)bigr)$ Perk-Schultz model. We show that the corresponding connection matrices are described by an elliptic solution of a supersymmetric version of the dynamical quantum Yang-Baxter equation with spectral parameter.
We study Virasoro minimal-model 4-point conformal blocks on the sphere and 0-point conformal blocks on the torus (the Virasoro characters), as solutions of Zamolodchikov-type recursion relations. In particular, we study the singularities due to resonances of the dimensions of conformal fields in minimal-model representations, that appear in the intermediate steps of solving the recursion relations, but cancel in the final results.
We are concerned with nonexistence results for a class of quasilinear parabolic differential problems with a potential in $Omegatimes(0,+infty)$, where $Omega$ is a bounded domain. In particular, we investigate how the behavior of the potential near the boundary of the domain and the power nonlinearity affect the nonexistence of solutions. Particular attention is devoted to the special case of the semilinear parabolic problem, for which we show that the critical rate of growth of the potential near the boundary ensuring nonexistence is sharp.
Recently it has been pointed out that the Faddeev-Niemi equations that correspond to the Yang-Mills equations of motion for a decomposed gauge field, can have solutions that obey the standard Yang-Mills equations with a source term. Here we present a general class of such gauge field configurations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا