The possibility of a minimal physical length in quantum gravity is discussed within the asymptotic safety approach. Using a specific mathematical model for length measurements (COM microscope) it is shown that the spacetimes of Quantum Einstein Gravity (QEG) based upon a special class of renormalization group trajectories are fuzzy in the sense that there is a minimal coordinate separation below which two points cannot be resolved.
Within the asymptotic safety scenario for gravity various conceptual issues related to the scale dependence of the metric are analyzed. The running effective field equations implied by the effective average action of Quantum Einstein Gravity (QEG) and the resulting families of resolution dependent metrics are discussed. The status of scale dependent vs. scale independent diffeomorphisms is clarified, and the difference between isometries implemented by scale dependent and independent Killing vectors is explained. A concept of scale dependent causality is proposed and illustrated by various simple examples. The possibility of assigning an intrinsic length to objects in a QEG spacetime is also discussed.
Studies in string theory and quantum gravity suggest the existence of a finite lower limit $Delta x_0$ to the possible resolution of distances, at the latest on the scale of the Planck length of $10^{-35}m$. Within the framework of the euclidean path integral we explicitly show ultraviolet regularisation in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example geometry is studied in detail.
Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum 4-sphere is discussed as a specific example of a fractal spacetime manifold. The relation between the infrared cutoff built into the effective average action and the corresponding coarse graining scale is investigated. Analyzing the properties of the pertinent cutoff modes, the possibility that QEG generates a minimal length scale dynamically is explored. While there exists no minimal proper length, the QEG sphere appears to be fuzzy in the sense that there is a minimal angular separation below which two points cannot be resolved by the cutoff modes.
We investigate the effective Dirac equation, corrected by merging two scenarios that are expected to emerge towards the quantum gravity scale. Namely, the existence of a minimal length, implemented by the generalized uncertainty principle, and exotic spinors, associated with any non-trivial topology equipping the spacetime manifold. We show that the free fermionic dynamical equations, within the context of a minimal length, just allow for trivial solutions, a feature that is not shared by dynamical equations for exotic spinors. In fact, in this coalescing setup, the exoticity is shown to prevent the Dirac operator to be injective, allowing the existence of non-trivial solutions.
We put to the test an effective three-dimensional electrostatic potential, obtained effectively by considering an electrostatic source inside a (5+$p$)-dimensional braneworld scenario with $p$ compact and one infinite spacial extra dimensions in the RS II-$p$ model, for $p=1$ and $p=2$. This potential is regular at the source and matches the standard Coulomb potential outside a neighborhood. We use variational and perturbative approximation methods to calculate corrections to the ground energy of the Helium atom modified by this potential, by making use of a 6 and 39-parameter trial wave function of Hylleraas type for the ground state. These corrections to the ground-state energy are compared with experimental data for Helium atom in order to set bounds for the extra dimensions length scale. We find that these bounds are less restrictive than the ones obtained by Morales et. al. through a calculation using the Lamb shift in Hydrogen.