We compute the quantum string entropy S_s(m, H) from the microscopic string density of states of mass m in Anti de Sitter space-time. For high m, (high Hm -->c/alpha), no phase transition occurs at the Anti de Sitter string temperature T_{s} which is higher than the flat space (Hagedorn) temperature t_{s}. (the Hubble constant H acts as producing a smaller string constant and thus, a higher tension). T_s is the precise quantum dual of the semiclassical (QFT) Anti de Sitter temperature scale . We compute the quantum string emission by a black hole in Anti de Sitter space-time (bhAdS). In the early evaporation stage, it shows the QFT Hawking emission with temperature T_{sem~bhAdS}, (semiclassical regime). For T_{sem~bhAdS}--> T_{s}, it exhibits a phase transition into a Anti de Sitter string state. New string bounds on the black hole emerge in the bhAdS string regime. We find a new formula for the full (quantum regime included) Anti de Sitter entropy S_{sem}, as a function of the usual Bekenstein-Hawking entropy S_{sem}^(0). For low H (semiclassical regime), S_{sem}^(0) is the leading term but for high H (quantum regime), no phase transition operates, in contrast to de Sitter space, and the entropy S_{sem} is very different from the Bekenstein-Hawking term S_{sem}^(0).