We show that it is possible to distinguish between different off-shell completions of supergravity at the on-shell level. We focus on the comparison of the ``new minimal formulation of off-shell four-dimensional N=1 supergravity with the ``old minimal formulation. We show that there are 3-manifolds which admit supersymmetric compactifications in the new-minimal formulation but which do not admit supersymmetric compactifications in other formulations. Moreover, on manifolds with boundary the new-minimal formulation admits ``singleton modes which are absent in other formulations.
After the discovery of a scalar resonance, resembling the Higgs boson, its couplings have been extensively studied via the measurement of various production and decay channels on the invariant mass peak. Recently, it has been suggested the possibility to use off-shell measurements: in particular, CMS has published results based on the high- invariant mass cross section of the process $gg to ZZ$, which contains the contribution of the Higgs. While this measurement has been interpreted as a constraint on the Higgs width after very specific assumptions are taken on the Higgs couplings, in this letter we show that a much more model-independent interpretation is possible.
We study N=2 supergravity deformed by a genuine supersymmetric completion of the $lambda R^4$ term, using the underlying off shell N=2 superconformal framework. The gauge-fixed superconformal model has unbroken local supersymmetry of N=2 supergravity with higher derivative deformation. Elimination of auxiliary fields leads to the deformation of the supersymmetry rules as well as to the deformation of the action, which becomes a Born-Infeld with higher derivative type action. We find that the gravitino supersymmetry deformation starts from $lambda , pa^4 {cal F}^3$ and has higher graviphoton couplings. In the action there are terms $lambda^2 pa^8 {cal F}^{6}$ and higher, in addition to original on shell counterterm deformation. These deformations are absent in the on shell superspace and in the candidate on shell counterterms of N=4,~8 supergravities, truncated down to N=2. We conclude therefore that the undeformed on shell superspace candidate counterterms break the N=2 part of local supersymmetry.
The NuTeV collaboration has performed precision measurements of the ratio of neutral current to charged current cross-sections in high rate, high energy neutrino and anti-neutrino beams on a dense, primarily steel, target. The separate neutrino and anti-neutrino beams, high statistics, and improved control of other experimental systematics, allow the determination of electroweak parameters with significantly greater precision than past neutrino-nucleon scattering experiments. Our null hypothesis test of the standard model prediction measures sin2thetaW=0.2277+/-0.0013(stat)+/-0.0009(syst), a value which is 3 sigma above the prediction. We discuss possible explanations for and implications of this discrepancy.
We discuss the improvement of bilinear fermionic operators for Ginsparg-Wilson fermions. We present explicit formulae for improved Greens functions, which apply both on-shell and off-shell.
We present an unfolded off-shell formulation for free massless higher-spin fields in 4d Minkowski space in terms of spinorial variables. This system arises from the on-shell one by the addition of external higher-spin currents, for which we find an unfolded description. Also we show that this off-shell system can be interpreted as Schwinger-Dyson equations and restore two-point functions of higher-spin fields this way.