Do you want to publish a course? Click here

Exact $phi_{1,3}$ boundary flows in the tricritical Ising model

103   0   0.0 ( 0 )
 Added by Giovanni Feverati
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

We consider the tricritical Ising model on a strip or cylinder under the integrable perturbation by the thermal $phi_{1,3}$ boundary field. This perturbation induces five distinct renormalization group (RG) flows between Cardy type boundary conditions labelled by the Kac labels $(r,s)$. We study these boundary RG flows in detail for all excitations. Exact Thermodynamic Bethe Ansatz (TBA) equations are derived using the lattice approach by considering the continuum scaling limit of the $A_4$ lattice model with integrable boundary conditions. Fixing the bulk weights to their critical values, the integrable boundary weights admit a thermodynamic boundary field $xi$ which induces the flow and, in the continuum scaling limit, plays the role of the perturbing boundary field $phi_{1,3}$. The excitations are completely classified, in terms of string content, by $(m,n)$ systems and quantum numbers but the string content changes by either two or three well-defined mechanisms along the flow. We identify these mechanisms and obtain the induced maps between the relevant finitized Virasoro characters. We also solve the TBA equations numerically to determine the boundary flows for the leading excitations.



rate research

Read More

By considering the continuum scaling limit of the $A_{4}$ RSOS lattice model of Andrews-Baxter-Forrester with integrable boundaries, we derive excited state TBA equations describing the boundary flows of the tricritical Ising model. Fixing the bulk weights to their critical values, the integrable boundary weights admit a parameter $xi $ which plays the role of the perturbing boundary field $phi_{1,3}$ and induces the renormalization group flow between boundary fixed points. The boundary TBA equations determining the RG flows are derived in the $mathcal{B}_{(1,2)}to mathcal{B}_{(2,1)}$ example. The induced map between distinct Virasoro characters of the theory are specified in terms of distribution of zeros of the double row transfer matrix.
We describe an extension of the nonlinear integral equation (NLIE) method to Virasoro minimal models perturbed by the relevant operator $Phi_{(1,3)$. Along the way, we also complete our previous studies of the finite volume spectrum of sine-Gordon theory by considering the attractive regime and more specifically, breather states. For the minimal models, we examine the states with zero topological charge in detail, and give numerical comparison to TBA and TCS results. We think that the evidence presented strongly supports the validity of the NLIE description of perturbed minimal models.
We study the massless flows described by the staircase model introduced by Al.B. Zamolodchikov through the analytic continuation of the sinh-Gordon S-matrix, focusing on the renormalisation group flow from the tricritical to the critical Ising model. We show that the properly defined roaming limits of certain sinh-Gordon form factors are identical to the form factors of the order and disorder operators for the massless flow. As a by-product, we also construct form factors for a semi-local field in the sinh-Gordon model, which can be associated with the twist field in the ultraviolet limiting free massless bosonic theory.
In this paper we give an exact infinite-series expression for the bi-partite entanglement entropy of the quantum Ising model both with a boundary magnetic field and in infinite volume. This generalizes and extends previous results involving the present authors for the bi-partite entanglement entropy of integrable quantum field theories, which exploited the generalization of the form factor program to branch-point twist fields. In the boundary case, we isolate in a universal way the part of the entanglement entropy which is related to the boundary entropy introduced by Affleck and Ludwig, and explain how this relation should hold in more general QFT models. We provide several consistency checks for the validity of our form factor results, notably, the identification of the leading ultraviolet behaviour both of the entanglement entropy and of the two-point function of twist fields in the bulk theory, to a great degree of precision by including up to 500 form factor contributions.
We introduce and analyze a quantum spin/Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit, but manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا