Do you want to publish a course? Click here

Heterotic plane wave matrix models and giant gluons

209   0   0.0 ( 0 )
 Added by Lubos Motl
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we define and study a matrix model describing the M-theory plane wave background with a single Horava-Witten domain wall. In the limit of infinite mu, the matrix model action becomes quadratic and we can identify the matrix Hamiltonian with a regularized Hamiltonian for hemispherical membranes that carry fermionic degrees of freedom on their boundaries. The number of fermionic degrees of freedom must be sixteen; this condition arises naturally in the framework of the matrix model. We can also prove the exact E_8 symmetry of the spectrum around the membrane vacua at infinite mu, which arises as a current algebra at level one just as in the heterotic string. We also find the full E_8 gauge multiplet as well as the multiple-gluon states, carried by collections of hemispherical membranes. Finally we discuss the dual description of the hemispherical membranes in terms of spherical fivebranes immersed in the domain wall; we identify the correct vacuum of the matrix model and make some preliminary comparisons with the (1,0) superconformal field theory.



rate research

Read More

We analyze the pentagon transitions involving arbitrarily many flux-tube gluonic excitations and bound states thereof in planar N=4 Super-Yang-Mills theory. We derive all-loop expressions for all these transitions by factorization and fusion of the elementary transitions for the lightest gluonic excitations conjectured in a previous paper. We apply the proposals so obtained to the computation of MHV and NMHV scattering amplitudes at any loop order and find perfect agreement with available perturbative data up to four loops.
180 - M. Maio , A.N. Schellekens 2011
We study orbifolds by permutations of two identical N=2 minimal models within the Gepner construction of four dimensional heterotic strings. This is done using the new N=2 supersymmetric permutation orbifold building blocks we have recently developed. We compare our results with the old method of modding out the full string partition function. The overlap between these two approaches is surprisingly small, but whenever a comparison can be made we find complete agreement. The use of permutation building blocks allows us to use the complete arsenal of simple current techniques that is available for standard Gepner models, vastly extending what could previously be done for permutation orbifolds. In particular, we consider (0,2) models, breaking of SO(10) to subgroups, weight-lifting for the minimal models and B-L lifting. Some previously observed phenomena, for example concerning family number quantization, extend to this new class as well, and in the lifted models three family models occur with abundance comparable to two or four.
We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.
Motivated by the BPS/CFT correspondence, we explore the similarities between the classical $beta$-deformed Hermitean matrix model and the $q$-deformed matrix models associated to 3d $mathcal{N}=2$ supersymmetric gauge theories on $D^2times_{q}S^1$ and $S_b^3$ by matching parameters of the theories. The novel results that we obtain are the correlators for the models, together with an additional result in the classical case consisting of the $W$-algebra representation of the generating function. Furthermore, we also obtain surprisingly simple expressions for the expectation values of characters which generalize previously known results.
215 - Luca Cassia , Maxim Zabzine 2021
We consider the matrix model of $U(N)$ refined Chern-Simons theory on $S^3$ for the unknot. We derive a $q$-difference operator whose insertion in the matrix integral reproduces an infinite set of Ward identities which we interpret as $q$-Virasoro constraints. The constraints are rewritten as difference equations for the generating function of Wilson loop expectation values which we solve as a recursion for the correlators of the model. The solution is repackaged in the form of superintegrability formulas for Macdonald polynomials. Additionally, we derive an equivalent $q$-difference operator for a similar refinement of ABJ theory and show that the corresponding $q$-Virasoro constraints are equal to those of refined Chern-Simons for a gauge super-group $U(N|M)$. Our equations and solutions are manifestly symmetric under Langlands duality $qleftrightarrow t^{-1}$ which correctly reproduces 3d Seiberg duality when $q$ is a specific root of unity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا