We investigate the Kalb-Ramond antisymmetric tensor field as solution to the muon $g-2$ problem. In particular we calculate the lowest-order Kalb-Ramond contribution to the muon anomalous magnetic moment and find that we can fit the new experimental value for the anomaly by adjusting the coupling without affecting the electron anomalous magnetic moment results.
The evaluation of the hadronic contribution to the muon magnetic anomaly $a_mu$ is revisited, taking advantage of new experimental data on $e^+e^-$ annihilation into hadrons: SND and CMD-2 for the $pi^+pi^-$ channel, and babar for multihadron final states. Discrepancies are observed between KLOE and CMD-2/SND data, preventing one from averaging all the $e^+e^-$ results. The long-standing disagreement between spectral functions obtained from $tau$ decays and $e^+e^-$ annihilation is still present, and not accounted by isospin-breaking corrections, for which new estimates have been presented. The updated Standard Model value for $a_mu$ based on $e^+e^-$ annihilation data is now reaching a precision better than experiment, and it disagrees with the direct measurement from BNL at the 3.3$sigma$ level, while the $tau$-based estimate is in much better agreement. The $tau$/$e^+e^-$ discrepancy, best revealed when comparing the measured branching fraction for $tau^- to pi^- pi^0 u_tau$ to its prediction from the isospin-breaking-corrected $e^+e^-$ spectral function, remains a serious problem to be understood.
We present a calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, $a_mu^{mathrm hvp}$, in lattice QCD employing dynamical up and down quarks. We focus on controlling the infrared regime of the vacuum polarization function. To this end we employ several complementary approaches, including Pade fits, time moments and the time-momentum representation. We correct our results for finite-volume effects by combining the Gounaris-Sakurai parameterization of the timelike pion form factor with the Luscher formalism. On a subset of our ensembles we have derived an upper bound on the magnitude of quark-disconnected diagrams and found that they decrease the estimate for $a_mu^{mathrm hvp}$ by at most 2%. Our final result is $a_mu^{mathrm hvp}=(654pm32,{}^{+21}_{-23})cdot 10^{-10}$, where the first error is statistical, and the second denotes the combined systematic uncertainty. Based on our findings we discuss the prospects for determining $a_mu^{mathrm hvp}$ with sub-percent precision.
We compute the vacuum polarisation on the lattice in quenched QCD using non-perturbatively improved Wilson fermions. Above Q^2 of about 2 GeV^2 the results are very close to the predictions of perturbative QCD. Below this scale we see signs of non-perturbative effects which we can describe by the use of dispersion relations. We use our results to estimate the light quark contribution to the muons anomalous magnetic moment. We find the result 446(23) x 10^{-10}, where the error only includes statistical uncertainties. Finally we make some comments on the applicability of the Operator Product Expansion to our data.
We present results for the leading hadronic contribution to the muon anomalous magnetic moment due to strange quark-connected vacuum polarisation effects. Simulations were performed using RBC--UKQCDs $N_f=2+1$ domain wall fermion ensembles with physical light sea quark masses at two lattice spacings. We consider a large number of analysis scenarios in order to obtain solid estimates for residual systematic effects. Our final result in the continuum limit is $a_mu^{(2),{rm had},,s}=53.1(9)left(^{+1}_{-3}right)times10^{-10}$.
We propose a new experiment to measure the running of the fine-structure constant in the space-like region by scattering high-energy muons on atomic electrons of a low-Z target through the process $mu e to mu e$. The differential cross section of this process, measured as a function of the squared momentum transfer $t=q^2<0$, provides direct sensitivity to the leading-order hadronic contribution to the muon anomaly $a^{rm{HLO}}_{mu}$. By using a muon beam of 150 GeV, with an average rate of $sim1.3times 10^7$ muon/s, currently available at the CERN North Area, a statistical uncertainty of $sim 0.3%$ can be achieved on $a^{rm{HLO}}_{mu}$ after two years of data taking. This direct measurement of $a^{rm{HLO}}_{mu}$ will provide an independent determination, competitive with the time-like dispersive approach, and consolidate the theoretical prediction for the muon $g$-2 in the Standard Model. It will allow therefore a firmer interpretation of the measurements of the future muon $g$-2 experiments at Fermilab and J-PARC.