Do you want to publish a course? Click here

Narrow Technihadron Production at the First Muon Collider

60   0   0.0 ( 0 )
 Added by ul
 Publication date 1998
  fields
and research's language is English




Ask ChatGPT about the research

In modern technicolor models, there exist very narrow spin-zero and spin-one neutral technihadrons---$pi^0_T$, $rho^0_T$ and $omega_T$---with masses of a few 100 GeV. The large coupling of $pi^0_T$ to $mu^+mu^-$, the direct coupling of $rho^0_T$ and $omega_T$ to the photon and $Z^0$, and the superb energy resolution of the First Muon Collider may make it possible to resolve these technihadrons and produce them at extraordinarily large rates.



rate research

Read More

Measuring longitudinally polarized vector boson scattering in, e.g., the ZZ channel is a promising way to investigate the unitarization scheme from the Higgs and possible new physics beyond the Standard Model. However, at the LHC, it demands the end of the HL-LHC lifetime luminosity, 3000/fb, and advanced data analysis technique to reach the discovery threshold due to its small production rates. Instead, there could be great potential for future colliders. In this paper, we perform a Monte Carlo study and examine the projected sensitivity of longitudinally polarized ZZ scattering at a TeV scale muon collider. We conduct studies at 14 TeV and 6 TeV muon colliders respectively and find that a 5 standard deviation discovery can be achieved at a 14 TeV muon collider, with 3000/fb of data collected. While a 6 TeV muon collider can already surpass HL-LHC, reaching 2 standard deviations with around 4000/fb of data. The effect from lepton isolation and detector granularity is also discussed, which may be more obvious at higher energy muon colliders, as the leptons from longitudinally polarized Z decays tend to be closer.
The LHCb measurements of the $mu / e$ ratio in $B to K ell ell$ decays $(R_{K^{}})$ indicate a deficit with respect to the Standard Model prediction, supporting earlier hints of lepton universality violation observed in the $R_{K^{(*)}}$ ratio. Possible explanations of these $B$-physics anomalies include heavy $Z$ bosons or leptoquarks mediating $b to s mu^+ mu^- $. We note that a muon collider can directly measure this process via $mu^+ mu^- to b bar s$ and can shed light on the lepton non-universality scenario. Investigating currently discussed center-of-mass energies $sqrt{s} = 3$, 6 and 10 TeV, we show that the parameter space of $Z$ and $S_3$ leptoquark solutions to the $R_{K^{(*)}}$ anomalies can be mostly covered. Effective operators explaining the anomalies can be probed with the muon collider setup $sqrt{s} = 6~{rm TeV}$ and integrated luminosity $L = 4~{rm ab^{-1}}$.
We explore the sensitivity of directly testing the muon-Higgs coupling at a high-energy muon collider. This is strongly motivated if there exists new physics that is not aligned with the Standard Model Yukawa interactions which are responsible for the fermion mass generation. We illustrate a few such examples for physics beyond the Standard Model. With the accidentally small value of the muon Yukawa coupling and its subtle role in the high-energy production of multiple (vector and Higgs) bosons, we show that it is possible to measure the muon-Higgs coupling to an accuracy of ten percent for a 10 TeV muon collider and a few percent for a 30 TeV machine by utilizing the three boson production, potentially sensitive to a new physics scale about $Lambda sim 30-100$ TeV.
We investigate the sensitivity of the projected TeV muon collider to the gauged $L^{}_{mu}$-$L^{}_{tau}$ model. Two processes are considered: $Z$-mediated two-body scatterings $mu^+ mu^- to ell^+ ell^-$ with $ell = mu$ or $tau$, and scattering with initial state photon emission, $mu^+ mu^- to gamma Z,~Z to ell overline{ell}$, where $ell$ can be $mu$, $tau$ or $ u_{mu/tau}$. We quantitatively study the sensitivities of these two processes by taking into account possible signals and relevant backgrounds in a muon collider experiment with a center-of-mass energy $sqrt{s} = 3~{rm TeV}$ and a luminosity $L=1~{rm ab^{-1}}$. For two-body scattering one can exclude $Z$ masses $M^{}_{Z} lesssim 100~{rm TeV}$ with $mathcal{O}(1)$ gauge couplings. When $M^{}_{Z} lesssim 1~{rm TeV} <sqrt{s}$, one can exclude $g gtrsim 2times 10^{-2}$. The process with photon emission is more powerful than the two-body scattering if $M^{}_{Z} < sqrt{s}$. For instance, a sensitivity of $g simeq 4 times 10^{-3}$ can be achieved at $M^{}_{Z} = 1~{rm TeV}$. The parameter spaces favored by the $(g-2)^{}_{mu}$ and $B$ anomalies with $M^{}_{Z} > 100~{rm GeV}$ are entirely covered by a muon collider.
We study the discovery potential of the non-Standard Model (SM) heavy Higgs bosons in the Two-Higgs-Doublet Models (2HDMs) at a multi-TeV muon collider and explore the discrimination power among different types of 2HDMs. We find that the pair production of the non-SM Higgs bosons via the universal gauge interactions is the dominant mechanism once above the kinematic threshold. Single Higgs boson production associated with a pair of heavy fermions could be important in the parameter region with enhanced Yukawa couplings. For both signal final states, $mu^+ mu^-$ annihilation channels dominate over the vector boson fusion (VBF) processes, except at high center of mass energies where the VBF processes receive large logarithmic enhancement with the increase of energies. Single Higgs boson $s$-channel production in $mu^+ mu^-$-annihilation via the radiative return can also be important for the Type-L 2HDM in the very large $tanbeta$ region, extending the kinematic reach of the heavy Higgs boson mass to the collider energy. Considering both the production and decay of non-SM Higgs bosons, signals can be identified over the Standard Model backgrounds. Different types of 2HDMs can be distinguishable for moderate and large values of $tanbeta$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا