No Arabic abstract
The quark and charged lepton masses and the angles and phase of the CKM mixing matrix are nicely reproduced in a model which assumes SU(3)xSU(3) flavour symmetry broken by the v.e.v.s of fields in its bi-fundamental representation. The relations among the quark mass eigenvalues, m_u/m_c approx m_c/m_t approx m^2_d/m^2_s approx m^2_s/m^2_b approx Lambda^2_{GUT}/M^2_{Pl}, follow from the broken flavour symmetry. Large tan(beta) is required which also provides the best fits to data for the obtained textures. Lepton-quark grandunification with a field that breaks both SU(5) and the flavour group correctly extends the predictions to the charged lepton masses. The seesaw extension of the model to the neutrino sector predicts a Majorana mass matrix quadratically hierarchical as compared to the neutrino Dirac mass matrix, naturally yielding large mixings and low mass hierarchy for neutrinos.
The QCD up- and down-quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector current divergences. In the QCD sector this correlator is known to five loop order in perturbative QCD (PQCD), together with non-perturbative corrections from the quark and gluon condensates. This FESR is designed to reduce considerably the systematic uncertainties arising from the hadronic spectral function. The determination is done in the framework of both fixed order and contour improved perturbation theory. Results from the latter, involving far less systematic uncertainties, are: $bar{m}_u (2, mbox{GeV}) = (2.6 , pm , 0.4) , {mbox{MeV}}$, $bar{m}_d (2, mbox{GeV}) = (5.3 , pm , 0.4) , {mbox{MeV}}$, and the sum $bar{m}_{ud} equiv (bar{m}_u , + , bar{m}_d)/2$, is $bar{m}_{ud}({ 2 ,mbox{GeV}}) =( 3.9 , pm , 0.3 ,) {mbox{MeV}}$.
The up and down quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector divergences, to five loop order in Perturbative QCD (PQCD), and including leading non-perturbative QCD and higher order quark mass corrections. This FESR is designed to reduce considerably the systematic uncertainties arising from the (unmeasured) hadronic resonance sector, which in this framework contributes less than 3-4% to the quark mass. This is achieved by introducing an integration kernel in the form of a second degree polynomial, restricted to vanish at the peak of the two lowest lying resonances. The driving hadronic contribution is then the pion pole, with parameters well known from experiment. The determination is done in the framework of Contour Improved Perturbation Theory (CIPT), which exhibits a very good convergence, leading to a remarkably stable result in the unusually wide window $s_0 = 1.0 - 4.0 {GeV}^2$, where $s_0$ is the radius of the integration contour in the complex energy (squared) plane. The results are: $m_u(Q= 2 {GeV}) = 2.9 pm 0.2 $ MeV, $m_d(Q= 2 {GeV}) = 5.3 pm 0.4$ MeV, and $(m_u + m_d)/2 = 4.1 pm 0.2$ Mev (at a scale Q=2 GeV).
We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging from $aapprox0.15$~fm to $0.03$~fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $overline{text{MS}}$-renormalized masses are $m_u(2~text{GeV}) = 2.130(41)$~MeV, $m_d(2~text{GeV}) = 4.675(56)$~MeV, $m_s(2~text{GeV}) = 92.47(69)$~MeV, $m_c(3~text{GeV}) = 983.7(5.6)$~MeV, and $m_c(m_c) = 1273(10)$~MeV, with four active flavors; and $m_b(m_b) = 4195(14)$~MeV with five active flavors. We also obtain ratios of quark masses $m_c/m_s = 11.783(25)$, $m_b/m_s = 53.94(12)$, and $m_b/m_c = 4.578(8)$. The result for $m_c$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $alpha_s^4$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $overline{Lambda}_text{MRS}=555(31)$~MeV in the minimal renormalon-subtracted (MRS) scheme, $mu_pi^2 = 0.05(22)~text{GeV}^2$, and $mu_G^2(m_b)=0.38(2)~text{GeV}^2$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph]] is the key new aspect of our method.
In a previous letter (arXiv:1306.2287) we determined the isospin mass splittings of the baryon octet from a lattice calculation based on quenched QED and $N_f{=}2{+}1$ QCD simulations with 5 lattice spacings down to $0.054~mathrm{fm}$, lattice sizes up to $6~mathrm{fm}$ and average up-down quark masses all the way down to their physical value. Using the same data we determine here the corrections to Dashens theorem and the individual up and down quark masses. For the parameter which quantifies violations to Dashenss theorem, we obtain $epsilon=0.73(2)(5)(17)$, where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, $m_u=2.27(6)(5)(4)~mathrm{MeV}$ and $m_d=4.67(6)(5)(4)~mathrm{MeV}$ in the $bar{mathrm{MS}}$ scheme at $2~mathrm{GeV}$ and the isospin breaking ratios $m_u/m_d=0.485(11)(8)(14)$, $R=38.2(1.1)(0.8)(1.4)$ and $Q=23.4(0.4)(0.3)(0.4)$. Our results exclude the $m_u=0$ solution to the strong CP problem by more than $24$ standard deviations.
We present a determination of the corrections to Dashens theorem and of the individual up and down quark masses from a lattice calculation based on quenched QED and $N_f=2+1$ QCD simulations with 5 lattice spacings down to 0.054 fm. The simulations feature lattice sizes up to 6 fm and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashenss theorem we obtain $epsilon=0.73(2)(5)(17)$, where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, $m_u=2.27(6)(5)(4) , MeV$ and $m_d=4.67(6)(5)(4) , MeV$ in the $overline{MS}$ scheme at $2 , GeV$ and the isospin breaking ratios $m_u/m_d=0.485(11)(8)(14)$, $R=38.2(1.1)(0.8)(1.4)$ and $Q=23.4(0.4)(0.3)(0.4)$. Our results exclude the $m_u=0$ solution to the strong CP problem by more than 24 standard deviations.