Full one-loop electroweak and NLO QCD corrections to the associated production of chargino and neutralino at hadron colliders


Abstract in English

We study the process of the association production of chargino and neutralino including the NLO QCD and the complete one-loop electroweak corrections in the framework of the minimal supersymmetric standard model(MSSM) at the Fermilab Tevatron and the CERN Large Hadron Collider (LHC). In both the NLO QCD and one-loop electroweak calculations we apply the algorithm of the phase-space slicing(PSS) method. We find that the NLO QCD corrections generally increase the Born cross sections, while the electroweak relative corrections decrease the Born cross section in most of the chosen parameter space. The NLO QCD and electroweak relative corrections typically have the values of about 32% and -8% at the Tevatron, and about 42% and -6% at the LHC respectively. The results show that both the NLO QCD and the complete one-loop electroweak corrections to the processes $p bar p/pp to widetilde{chi}_1^{pm} widetilde{chi}_2^0+X$ are generally significant and should be taken into consideration in precision experimental analysis.

Download