No Arabic abstract
We provide an assessment of the impact of parton distributions on the determination of LHC processes, and of the accuracy with which parton distributions (PDFs) can be extracted from data, in particular from current and forthcoming HERA experiments. We give an overview of reference LHC processes and their associated PDF uncertainties, and study in detail W and Z production at the LHC. We discuss the precision which may be obtained from the analysis of existing HERA data, tests of consistency of HERA data from different experiments, and the combination of these data. We determine further improvements on PDFs which may be obtained from future HERA data (including measurements of $F_L$), and from combining present and future HERA data with present and future hadron collider data. We review the current status of knowledge of higher (NNLO) QCD corrections to perturbative evolution and deep-inelastic scattering, and provide reference results for their impact on parton evolution, and we briefly examine non-perturbative models for parton distributions. We discuss the state-of-the art in global parton fits, we assess the impact on them of various kinds of data and of theoretical corrections, by providing benchmarks of Alekhin and MRST parton distributions and a CTEQ analysis of parton fit stability, and we briefly presents proposals for alternative approaches to parton fitting. We summarize the status of large and small x resummation, by providing estimates of the impact of large x resummation on parton fits, and a comparison of different approaches to small x resummation, for which we also discuss numerical techniques.
We present main elements of the construction of unintegrated double parton distribution functions which depend on transverse momenta of partons. We follow the method proposed by Kimber, Martin and Ryskin for a construction of unintegrated single parton distributions from the standard parton distribution functions.
The present status of the heavy-quark production theory is critically reviewed in the first contribution. The second contribution summarises the present heavy flavour data from HERA and gives an outlook of what can be expected from HERA-II. The potential of the LHC experiments for charm and beauty physics is reviewed in the 3rd contribution. Then the relevance of saturation and small-x effects to heavy quark production at HERA and at the LHC are discussed. The non-perturbative aspects of heavy-quark fragmentation and their relevance to HERA and LHC are discussed in the next contribution. Finally, a comparison of different theoretical predictions for HERA and LHC based on different approaches is presented.
We provide an assessment of the state of the art in various issues related to experimental measurements, phenomenological methods and theoretical results relevant for the determination of parton distribution functions (PDFs) and their uncertainties, with the specific aim of providing benchmarks of different existing approaches and results in view of their application to physics at the LHC. We discuss higher order corrections, we review and compare different approaches to small x resummation, and we assess the possible relevance of parton saturation in the determination of PDFS at HERA and its possible study in LHC processes. We provide various benchmarks of PDF fits, with the specific aim of studying issues of error propagation, non-gaussian uncertainties, choice of functional forms of PDFs, and combination of data from different experiments and different processes. We study the impact of combined HERA (ZEUS-H1) structure function data, their impact on PDF uncertainties, and their implications for the computation of standard candle processes, and we review the recent F_L determination at HERA. Finally, we compare and assess methods for luminosity measurements at the LHC and the impact of PDFs on them.
Report of the Working Group on Higgs Bosons for the Workshop, ``Physics at TeV Colliders, Les Houches, France, 11-29 June, 2007.
The workshop on Parton Distributions and Lattice Calculations in the LHC era (PDFLattice2017) was hosted at Balliol College, Oxford (UK), from 22$^{rm nd}$ to 24$^{rm th}$ March 2017. The workshop brought together the lattice-QCD and the global-fit physicists who devote their efforts to determine the parton distribution functions (PDFs) of the proton. The goals were to make the two communities more familiar between each other, review developments from both sides, and set precision targets for lattice calculations so that they can contribute, together with the forthcoming experimental input, to the next generation of PDF determinations. This contribution summarises the relevant outcome of the workshop, in anticipation of a thorough white paper.