The Phenomenology of Universal Extra Dimensions at Hadron Colliders


Abstract in English

Theories with extra dimensions of inverse TeV size (or larger) predict a multitude of signals which can be searched for at present and future colliders. In this paper, we review the different phenomenological signatures of a particular class of models, universal extra dimensions, where all matter fields propagate in the bulk. Such models have interesting features, in particular Kaluza-Klein (KK) number conservation, which makes their phenomenology similar to that of supersymmetric theories. Thus, KK excitations of matter are produced in pairs, and decay to a lightest KK particle (LKP), which is stable and weakly interacting, and therefore will appear as missing energy in the detector (similar to a neutralino LSP). Adding gravitational interactions which can break KK number conservation greatly expands the class of possible signatures. Thus, if gravity is the primary cause for the decay of KK excitations of matter, the experimental signals at hadron colliders will be jets + missing energy, which is typical of supergravity models. If the KK quarks and gluons decay first to the LKP, which then decays gravitationally, the experimental signal will be photons and/or leptons (with some jets), which resembles the phenomenology of gauge mediated supersymmetry breaking models.

Download