Do you want to publish a course? Click here

Determining Sneutrino Masses and Physical Implications

49   0   0.0 ( 0 )
 Added by Ayres Freitas
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

In some areas of supersymmetry parameter space, sneutrinos are lighter than the charginos and the next-to-lightest neutralino, and they decay into the invisible neutrino plus lightest-neutralino channel with probability one. In such a scenario they can be searched for in decays of charginos that are pair-produced in e+e- collisions, and in associated sneutrino-chargino production in photon-electron collisions. The sneutrino properties can be determined with high accuracy from the edges of the decay energy spectra in the first case and from threshold scans in the second. In the final part of the report we investigate the mass difference of sneutrinos and charged sleptons between the third and the first two generations in seesaw-type models of the neutrino/sneutrino sector. For a wide range these mass differences are sensitive to the seesaw scale.

rate research

Read More

We study bounds on a neutral component of weak doublet scalar lepton. A typical example of such particle is sneutrinos in supersymmetric models. Using constraints from invisible Higgs decays we place a lower bound of approximately $m_h/2$. We recast a mono-$W/Z$ search, with hadronic vector boson tag in order to bound parameter space in the sneutrino--charged slepton mass plane. We find a lower bound on sneutrinos in the range of 55-100 GeV in the 36 $text{fb}^{-1}$ data set depending on the mass of charged component. We propose a sensitivity search in the hadronic mono-$W/Z$ channel for HL-LHC and discuss both the discovery potential in case an excess is seen and exclusion limit assuming no excess is seen.
The most naive interpretation of the BICEP2 data is the chaotic inflation by an inflaton with a quadratic potential. When combined with supersymmetry, we argue that the inflaton plays the role of right-handed scalar neutrino based on rather general considerations. The framework suggests that the right-handed sneutrino tunneled from a false vacuum in a landscape to our vacuum with a small negative curvature and suppressed scalar perturbations at large scales.
61 - R. Brock , D. Casey , J. Huston 2000
We describe preliminary results from an effort to quantify the uncertainties in parton distribution functions and the resulting uncertainties in predicted physical quantities. The production cross section of the $W$ boson is given as a first example. Constraints due to the full data sets of the CTEQ global analysis are used in this study. Two complementary approaches, based on the Hessian and the Lagrange multiplier method respectively, are outlined. We discuss issues on obtaining meaningful uncertainty estimates that include the effect of correlated experimental systematic uncertainties and illustrate them with detailed calculations using one set of precision DIS data.
For points in SUSY parameter space where the sneutrino is lighter than the lightest chargino and next-to-lightest neutralino, its direct mass determination from sneutrino pair production process at e+e- collider is impossible since it decays invisibly. In such a scenario the sneutrino can be discovered and its mass determined from measurements of two-body decays of charginos produced in pairs at the ILC. Using the event generator WHIZARD we study the prospects of measuring sneutrino properties in a realistic ILC environment. In our analysis we include beamstrahlung, initial state radiation, a complete account of reducible backgrounds from SM and SUSY processes, and a complete matrix-element calculation of the SUSY signal which encompasses all irreducible background and interference contributions. We also simulate photon induced background processes using exact matrix elements. Radiation effects and the cuts to reduce background strongly modify the edges of the lepton energy spectra from which the sneutrino and chargino mass are determined. We discuss possible approaches to measure the sneutrino mass with optimal precision.
51 - Werner Porod 1998
We discuss the phenomenology of third generation sfermions paying particular attention to the implications of the Yukawa couplings and to the left-right mixing. Analytical formulae are given for the sfermion mixing, the production cross sections at e+e- colliders, and for all possible two body decay widths that can occur at tree level. In case of the light stop stop we give in addition the analytical formulae for the most important three body decay widths. We give detailed numerical discussion of the various production cross sections at LEP2 and a future e+e- Linear Collider. We discuss the various decay channels paying particular attention on the decays into Higgs and vector bosons, and on the three body decays of the light stop.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا