In this note we examine the constraints imposed by muon anomalous magnetic moment ($(g-2)_mu$) and $mu^- to e^+ e^- e^-$ on lepton number violating (LNV) couplings of the triplet Higgs in Little Higgs (LH) model.
We study lepton number violation in Little Higgs model and find that the choice of putting triplet Higgs vev equal to zero so as not to have any tree level neutrino Majorana mass is not natural in the sense that such a term is generated at the one loop level. We investigate the contribution of exotic lepton number violating terms on neutrinoless double beta decay, K meson decay and on trilepton production in $ u$-N scattering.
Little Higgs models with T-parity have a new source of lepton flavour violation. In this paper we consider the anomalous magnetic moment of the muon gmtwo and the lepton flavour violating decays mutoeg and tautomug in Little Higgs model with T-parity cite{Goyal:2006vq}. Our results shows that present experimental constraints of mutoeg is much more useful to constrain the new sources of flavour violation which are present in T-parity models.
We report on our study of the LFV processes mu to egamma, muto eee and mu to e conversion in the context of Little Higgs models. Specifically we examine the Littlest Higgs with T-parity (LHT) and the Simplest Little Higgs (SLH) as examples of a Product group and Simple group Little Higgs models respectively. The necessary Feynman rules for both models are obtained in the t Hooft Feynman Gauge up to order v^2/f^2 and predictions for the branching ratios and conversion rates of the LFV processes are calculated to leading order (one-loop level). Comparison with current experimental constraints show that there is some tension and, in order to be within the limits, one requires a higher breaking scale f, alignment of the heavy and light lepton sectors or almost degenerate heavy lepton masses. These constraints are more demanding in the SLH than in the LHT case.
We study Lepton Flavour Violating hadron decays of the tau lepton within the Simplest Little Higgs model. Namely we consider $tau rightarrow mu (P, V, PP)$ where $P$ and $V$ are short for a pseudoscalar and a vector meson. We find that, in the most positive scenarios, branching ratios for these processes are predicted to be, at least, four orders of magnitude smaller than present experimental bounds.
We did a model independent phenomenological study of baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) and charged lepton flavour violation (CLFV) in a generic left-right symmetric model (LRSM) where neutrino mass originates from the type I + type II seesaw mechanism. We studied the new physics contributions to NDBD coming from the left-right gauge boson mixing and the heavy neutrino contribution within the framework of LRSM. We have considered the mass of the RH gauge boson to be specifically 5 TeV, 10 TeV and 18 TeV and studied the effects of the new physics contributions on the effective mass and baryogenesis and compared with the current experimental limit. We tried to correlate the cosmological BAU from resonant leptogenesis with the low energy observables, notably, NDBD and LFV with a view to finding a common parameter space where they coexists.