Possible Hadronic Molecule Lambda(1405) and Thermal Glueballs in SU(3) Lattice QCD


Abstract in English

We aim to construct quark hadron physics based on QCD. First, using lattice QCD, we study mass spectra of positive-parity and negative-parity baryons in the octet, the decuplet and the singlet representations of the SU(3) flavor. In particular, we consider the lightest negative-parity baryon, the $Lambda$(1405), which can be an exotic hadron as the $N bar K$ molecular state or the flavor-singlet three-quark state. We investigate the negative-parity flavor-singlet three-quark state in lattice QCD using the quenched approximation, where the dynamical quark-anitiquark pair creation is absent and no mixing occurs between the three-quark and the five-quark states. Our lattice QCD analysis suggests that the flavor-singlet three-quark state is so heavy that the $Lambda$(1405) cannot be identified as the three-quark state, which supports the possibility of the molecular-state picture of the $Lambda$(1405). Second, we study thermal properties of the scalar glueball in an anisotropic lattice QCD, and find about 300 MeV mass reduction near the QCD critical temperature from the pole-mass analysis. Finally, we study the three-quark potential, which is responsible to the baryon properties. The detailed lattice QCD analysis for the 3Q potential indicates the Y-type flux-tube formation linking the three quarks.

Download