Radiative mass generation and suppression of supersymmetric contributions to flavor changing processes


Abstract in English

We explore the possibility that the masses for the first two generations of fermions and the quark flavor violation are generated radiatively in the Minimal Supersymmetric Standard Model. We assume that the source of all flavor violation resides in the the supersymmetry breaking sector and is transmitted radiatively to the Standard Model fermion sector through finite corrections at low energy. The approximate radiative alignment between the Yukawa and soft supersymmetry breaking matrices helps to suppress some of the supersymmetric contributions to flavor changing processes, overcoming current experimental constraints. This mechanism may also explain the non-observation of proton decay, since flavor conservation in the superpotential would imply the suppression of dimension five operators in supersymmetric grand unified theories.

Download