No Arabic abstract
We discuss a realisation of the pentaquark structure proposed by Jaffe and Wilczek within a simple quark model with colour-spin contact interactions and coloured harmonic confinement, which accurately describes the $Delta-N$ splitting. In this model spatially compact diquarks are formed in the pentaquark but no such compact object exists in the nucleon. The colour-spin attraction brings the Jaffe-Wilczek-like state down to a low mass, compatible with the experimental observation and below that of the naive ground state with all $S$-waves. We find, however, that although these trends are maintained, the extreme effects observed do not survive the required ``smearing of the delta function contact interaction. We also demonstrate the weakness of the ``schematic approximation when applied to a system containing a $P$-wave. An estimate of the anti-charmed pentaquark mass is made which is in line with the Jaffe-Wilczek prediction and significantly less than the value reported by the H1 collaboration.
I examine the diquark model of pentaquarks that was suggested by Jaffe and Wilczek. Based upon this model, I predict the states Theta(1530), N(1710), Sigma(1880) and Xi(1770) to be members of the same anti-decuplet. Moreover I predict the states N(1440), Lambda(1600), Sigma(1660) and Xi(1950) to be members of the corresponding octet.
If Jaffe and Wilczeks diquark picture for $Theta_5$ pentaquark is correct, there should also exist a $SU_F$(3) pentaquark octet and singlet with no orbital excitation between the diquark pair, hence $J^P={1/2}^-$. These states are lighter than the $Theta_5$ anti-decuplet and lie close to the orbitally excited (L=1) three-quark states in the conventional quark model. We calculate their masses and magnetic moments and discuss their possible strong decays using the chiral Lagrangian formalism. Among them two pentaquarks with nucleon quantum numbers may be narrow. Selection rules of strong decays are derived. We propose the experimental search of these nine additional $J^P={1/2}^-$ baryon states. Especially there are two additional $J^P={1/2}^-$ $Lambda$ baryons around $Lambda (1405)$. We also discuss the interesting possibility of interpreting $Lambda (1405)$ as a pentaquark. The presence of these additional states will provide strong support of the diquark picture for the pentaquarks. If future experimental searches fail, one has to re-evaluate the relevance of this picture for the pentaquarks.
We construct the spin-flavor wave functions of the possible heavy pentaquarks containing an anti-charm or anti-bottom quark using various clustered quark models. Then we estimate the masses and magnetic moments of the $J^P={1over 2}^+$ or ${3over 2}^+$ heavy pentaquarks. We emphasize the difference in the predictions of these models. Future experimental searches at BESIII, CLEOc, BELLE, and LEP may find these interesting states.
By assuming a mass formula for the spectrum of the Y=2 pentaquarks, where the chromo-magnetic interaction plays a main role, and identifying the lightest state with the Theta^+(1540), we predict a spectrum in good agreement with the few I=0 and I=1 candidates proposed in the past.
Several experimental groups have reported evidence for baryons with flavor exotic quantum numbers that cannot be explained as $qqq$ bound states but require a minimum of five quarks -- $qqqq bar q$. These pentaquark states include the $theta^{+}$, the $Xi^{--}$ and the $theta_{c}$. The reported widths of these new states are consistent with experimental resolution and may be as narrow as a few MeV/$c^2$ or less. Prior to 2003, experimental searches for flavor exotic baryons spanning several decades yielded negative results. There have also been a number of searches carried out since the reports of these new pentaquark states that do not confirm their existence. This review of both the positive and negative reports seeks to understand the current situation regarding the experimental evidence for pentaquarks.