No Arabic abstract
We study model-independently the implications of non-standard scalar and pseudoscalar interactions for the decays b ->s gamma, b -> s g, b -> s l^+l^- (l=e,mu) and B_s -> mu^+ mu^-. We find sizeable renormalization effects from scalar and pseudoscalar four-quark operators in the radiative decays and at O(alpha_s) in hadronic b decays. Constraints on the Wilson coefficients of an extended operator basis are worked out. Further, the ratios R_H = BR(B -> H mu^+ mu^-)/BR(B -> H e^+ e^-), for H=K^(*), X_s, and their correlations with B_s -> mu^+ mu^- decay are investigated. We show that the Standard Model prediction for these ratios defined with the same cut on the dilepton mass for electron and muon modes, R_H= 1 + O(m^2_mu/m^2_b), has a much smaller theoretical uncertainty (<1%) than the one for the individual branching fractions. The present experimental limit R_K < 1.2 puts constraints on scalar and pseudoscalar couplings, which are similar to the ones from current data on BR(B_s -> mu^+ mu^-). We find that new physics corrections to R_{K*} and R_{X_s} can reach 13% and 10%, respectively.
Very compelling deviations in the recently observed lepton nonuniversality observables $big (R_{D^{(*)}}, R_{K^{(*)}}, R_{J/psi} big )$ of semileptonic $B$ meson decays from their Standard Model predictions hint towards the presence of some kind of new physics beyond it. In this regard, we investigate the effect of new physics in the semileptonic $bar B_{d(s)}^* to P ell bar{ u}_ell$ decay processes, where $P=D,pi (D_s,K$), in a model independent way. We consider the presence of additional vector and scalar type interactions and constrain the corresponding new couplings by fitting ${rm Br(B_{u}^+ to tau^+ u_tau)}$, ${rm Br(B to pi tau bar u_tau)}$, ${rm Br(B_{c}^+ to tau^+ u_tau)}$, $R_pi^l$, $R_{D^{(*)}}$ and $R_{J/psi}$ data. Using the constrained new parameters, we estimate the branching ratios, forward-backward asymmetry, lepton-spin asymmetry and lepton non-universality observables of $bar B_{d,s}^{*} to P tau bar u_tau$ processes. We find that the branching ratios of these decay modes are sizeable and deviate significantly (for vector-type couplings) from their corresponding standard model values, which are expected to be within the reach of Run III of Large Hadron Collider experiment.
The most general model-independent analysis of the rare $B$ decay, $Bsll$, is presented. There are ten independent local four-Fermi interactions which may contribute to this process. The branching ratio, the forward-backward asymmetry, and the double differential rate are written as functions of the Wilson coefficients of the ten operators. We also study the correlation between the branching ratio and the forward-backward asymmetry by changing each coefficient. This procedure tells us which types of operator contribute to the process, and it will be very useful to pin down new physics systematically, once we have the experimental data with high statistics and the deviation from the Standard Model is found.
Recently the LHCb collaboration has confirmed the evidence for lepton flavour nonuniversality at the $3.1sigma$ level via an updated measurement of $R_K$. In this work we analyse this evidence within a model-independent approach. We make projections for future measurements which indicate that LHCb will be in the position to discover lepton nonuniversality with the Run 3 data in a single observable. We analyse other ratios based on our analysis of the present measurements of the ratios $R_{K^{(*)}}$ and analyse if they are able to differentiate between various new physics options within the effective field theory at present or in the near future. We also compare the present deviations in the ratios with NP indications in the angular observables of exclusive $b to s ellell$ transitions. Finally, we update our global analysis considering all $b to s ellell$ observables altogether, including a 20-parameter fit in connection of a Wilks test.
We analyse the results recently presented on the $B^{+} to K^{*+} mu^+ mu^-$ angular observables by the LHCb Collaboration which show indications for New Physics beyond the Standard Model. Within a model-independent analysis, we compare the fit results with the corresponding results for the angular observables in $B^{0} to K^{*0} mu^+ mu^-$.
Many models for physics beyond the Standard Model predict lepton-flavour violating decays of charged leptons at a level which may become observable very soon. In the present paper we investigate the decays of a Tau into three charged leptons in a generic way, based on effective-field-theory methods, where the relevant operators are classified according to their chirality structure. We work out the decay distributions and discuss phenomenological implications.