We present a calculation of the B0 - anti-B0 mixing matrix element in the framework of QCD sum rules for three-point functions. We compute alpha_s corrections to a three-point function at the three-loop level in QCD perturbation theory, which allows one to extract the matrix element with next-to-leading order (NLO) accuracy. This calculation is imperative for a consistent evaluation of experimentally-measured mixing parameters since the coefficient functions of the effective Hamiltonian for B0 - anti-B0 mixing are known at NLO. We find that radiative corrections violate factorization at NLO; this violation is under full control and amounts to 10%.
Flavor oscillations of neutral $B$ mesons have been studied in $e^+e^-$ annihilation data collected with the BABAR detector at center-of-mass energies near the $Upsilon(4S)$ resonance. The data sample used for this purpose consists of events in which one $B^0$ meson is reconstructed in a hadronic decay mode, while the flavor of the recoiling $B^0$ is determined with a tagging algorithm that exploits the correlation between the flavor of the heavy quark and the charges of its decay products. From the time development of the observed mixed and unmixed final states we determine the $B^0$-$bar B^0$ oscillation frequency $Delta m_d$ to be $0.516 pm 0.016 ({stat}) pm 0.010 ({syst}) {rm ps}^{-1}$.
The $B^0$-$bar B^0$ oscillation frequency has been measured with a sample of 23 million $Bbar B$ pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives $Delta m_d = 0.493 pm 0.012{(stat)}pm 0.009{(syst)}$ ps$^{-1}$.
The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data sample was collected with the CDF detector at the Fermilab Tevatron collider during 1992 - 1995 by triggering on the existence of two lepton candidates in an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) = 1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the measured decay length and reconstructed momentum of the l- D*+ system. The charge of the lepton in the final state identifies the flavor of the anti-B0 meson at its decay. The second lepton in the event is used to infer the flavor of the anti-B0 meson at production. We measure the oscillation frequency to be Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is statistical and the second is systematic.
The decay amplitudes for anti-B0 -> Ds+ Ds- and anti-Bs0 -> D+ D- have no factorizable contributions. We suggest that dominant contributions to the decay amplitudes arise from two chiral loop contributions and one soft gluon emission contribution. Then we determine branching ratios BR(anti-B0 -> Ds+ Ds-) ~ 7E-5 and BR(anti-Bs0 -> D+ D-) ~ 1E-3.
We describe searches for B meson decays to the charmless vector-vector final states omega omega and omega phi with 471 x 10^6 B Bbar pairs produced in e+ e- annihilation at sqrt(s) = 10.58 GeV using the BABAR detector at the PEP-II collider at the SLAC National Accelerator Laboratory. We measure the branching fraction B(B0 --> omega omega) = (1.2 +- 0.3 +0.3-0.2) x 10^-6, where the first uncertainty is statistical and the second is systematic, corresponding to a significance of 4.4 standard deviations. We also determine the upper limit B(B0 --> omega phi) < 0.7 x 10^-6 at 90% confidence level. These measurements provide the first evidence for the decay B0 --> omega omega, and an improvement of the upper limit for the decay B0 --> omega phi.