Do you want to publish a course? Click here

Neutron charge form factor and quadrupole deformation of the nucleon

107   0   0.0 ( 0 )
 Added by A. J. Buchmann
 Publication date 2002
  fields
and research's language is English
 Authors A.J. Buchmann




Ask ChatGPT about the research

A quark model relation between the neutron charge form factor and the N->Delta charge quadrupole form factor is used to predict the C2/M1 ratio in the N->Delta transition from the elastic neutron form factor data. Excellent agreement with the electro-pionproduction data is found, indicating the validity of the suggested relation. The implication of the negative C2/M1 ratio for the intrinsic deformation of the nucleon is discussed.



rate research

Read More

210 - A.J. Buchmann 2007
To obtain further information on the geometric shape of the nucleon, the proton charge form factor is decomposed into two terms, which are connected respectively with a spherically symmetric and an intrinsic quadrupole part of the protons charge density. Quark model relations are employed to derive expressions for both terms. In particular, the protons intrinsic quadrupole form factor is obtained from a relation between the N -> Delta and neutron charge form factors. The proposed decomposition shows that the neutron charge form factor is an observable manifestation of an intrinsic quadrupole form factor of the nucleon. Furthermore, it affords an interpretation of recent electron-nucleon scattering data in terms of a nonspherical distribution of quark-antiquark pairs in the nucleon.
Motivated by the emerging possibilities to study threshold pion electroproduction at large momentum transfers at Jefferson Laboratory following the 12 GeV upgrade, we provide a short theory summary and an estimate of the nucleon axial form factor for large virtualities in the $Q^2 = 1-10~text{GeV}^2$ range using next-to-leading order light-cone sum rules.
We demonstrate the new class of variance reduction techniques for hadron propagator and nucleon isovector form factor in the realistic lattice of $N_f=2+1$ domain-wall fermion. All-mode averaging (AMA) is one of the powerful tools to reduce the statistical noise effectively for wider varieties of observables compared to existing techniques such as low-mode averaging (LMA). We adopt this technique to hadron two-point functions and three-point functions, and compare with LMA and traditional source-shift method in the same ensembles. We observe AMA is much more cost effective in reducing statistical error for these observables.
242 - S. Noguera , S. Scopetta 2011
The eta-photon transition form factor is evaluated in a formalism based on a phenomenological description at low values of the photon virtuality, and a QCD-based description at high photon virtualities, matching at a scale $Q_{0}^{2}$. The high photon virtuality description makes use of a Distribution Amplitude calculated in the Nambu-Jona-Lasinio model with Pauli-Villars regularization at the matching scale $Q_{0}^{2}$, and QCD evolution from $Q_{0}^{2}$ to higher values of $Q^{2}$. A good description of the available data is obtained. The analysis indicates that the recent data from the BaBar collaboration on pion and eta transition form factor can be well reproduced, if a small contribution of twist three at the matching scale $Q_{0}^{2}$ is included.
The measured electromagnetic form factors of $Lambda$ hyperon in the time-like region are significantly deviated from pQCD prediction. We attribute the non-vanishing cross section near threshold to be the contribution of below-threshold $phi$(2170) state, supporting its exotic structure. Above the threshold, we find significant role of a wide vector meson with the mass of around 2.34 GeV, which would be the same state present in $pbar{p}$ annihilation reactions. As a result, we give a satisfactory description of the behavior of existing data without modifying pQCD expectation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا