No Arabic abstract
A novel, non-power, expansion of QCD quantities replacing the standard perturbative expansion in powers of the renormalized couplant a has recently been introduced and examined by two of us. Being obtained by analytic continuation in the Borel plane, the new expansion functions W_n(a) share the basic analyticity properties with the expanded quantity. In this note we investigate the renormalization scale dependence of finite order sums of this new expansion for the phenomenologically interesting case of the tau-lepton decay rate.
Recent developments in non-perturbative renormalization for lattice QCD are reviewed with a particular emphasis on RI/MOM scheme and its variants, RI/SMOM schemes. Summary of recent developments in Schroedinger functional scheme, as well as the summary of related topics are presented. Comparison of strong coupling constant and the strange quark mass from various methods are made.
We present an evaluation of the quark mass renormalization factor for Nf=2+1 QCD. The Schroedinger functional scheme is employed as the intermediate scheme to carry out non-perturbative running from the low energy region, where renormalization of bare mass is performed on the lattice, to deep in the high energy perturbative region, where the conversion to the renormalization group invariant mass or the MS-bar scheme is safely carried out. For numerical simulations we adopted the Iwasaki gauge action and non-perturbatively improved Wilson fermion action with the clover term. Seven renormalization scales are used to cover from low to high energy regions and three lattice spacings to take the continuum limit at each scale. The regularization independent step scaling function of the quark mass for the Nf=2+1 QCD is obtained in the continuum limit. Renormalization factors for the pseudo scalar density and the axial vector current are also evaluated for the same action and the bare couplings as two recent large scale Nf=2+1 simulations; previous work of the CP-PACS/JLQCD collaboration, which covered the up-down quark mass range heavier than $m_pisim 500$ MeV and that of PACS-CS collaboration for much lighter quark masses down to $m_pi=155$ MeV. The quark mass renormalization factor is used to renormalize bare PCAC masses in these simulations.
We define a regularization-independent momentum-subtraction scheme for the $CP$-odd three-gluon operator at dimension six. This operator appears in effective field theories for heavy physics beyond the Standard Model, describing the indirect effect of new sources of $CP$-violation at low energies. In a hadronic context, it induces permanent electric dipole moments. The hadronic matrix elements of the three-gluon operator are non-perturbative objects that should ideally be evaluated with lattice QCD. We define a non-perturbative renormalization scheme that can be implemented on the lattice and we compute the scheme transformation to $overline{text{MS}}$ at one loop. Our calculation can be used as an interface to future lattice-QCD calculations of the matrix elements of the three-gluon operator, in order to obtain theoretically robust constraints on physics beyond the Standard Model from measurements of the neutron electric dipole moment.
The momentum space subtraction (MOM) scheme is one of the most frequently used renormalization schemes in perturbative QCD (pQCD) theory. In the paper, we make a detailed discussion on the gauge dependence of the pQCD prediction under the MOM scheme. Conventionally, there is renormalization scale ambiguity for the fixed-order pQCD predictions, which assigns an arbitrary range and an arbitrary error for the fixed-order pQCD prediction. The principle of maximum conformality (PMC) adopts the renormalization group equation to determine the magnitude of the coupling constant and hence determines an effective momentum flow of the process, which is independent to the choice of renormalization scale. There is thus no renormalization scale ambiguity in PMC predictions. To concentrate our attention on the MOM gauge dependence, we first apply the PMC to deal with the pQCD series. We adopt the Higgs boson decay width, $Gamma(Hto gg)$, up to five-loop QCD contributions as an example to show how the gauge dependence behaves before and after applying the PMC. It is found that the Higgs decay width $Gamma (Hto gg)$ depends very weakly on the choices of the MOM schemes, being consistent with the renormalization group invariance. It is found that the gauge dependence of $Gamma(Hto gg)$ under the $rm{MOMgg}$ scheme is less than $pm1%$, which is the smallest gauge dependence among all the mentioned MOM schemes.
We present non-perturbative renormalization factors for $Delta S=2$ four-quark operators in quenched domain-wall QCD using the Schroedinger functional method. Non-perturbative renormalization factor for $B_K$ is evaluated at hadronic scale. Combined with the non-perturbative RG running obtained by the Alpha collaboration, our result yields renormalization factor which converts lattice bare $B_K$ to the renormalization group invariant one. We apply the renormalization factor to bare $B_K$ previously obtained by the CP-PACS collaboration with the quenched domain-wall QCD(DWQCD). We compare our result with previous ones obtained by perturbative renormalization factors, different renormalization schemes or different quark actions. We also show that chiral symmetry breaking effects in the renormalization factor are numerically small.