The recently observed CP violation in B decay and $B$-$ovar{B}$ mixing data put constraints on the mass of $W_R$ and the parameters of the right-handed current quark mixing matrix $V^R$ in $SU(2)_L times SU(2)_Rtimes U(1)$ gauge model. It is shown that the allowed region of parameters are severely restricted for light $W_R$ with mass on the order of 1 TeV. There exist sets of parameters which can accommodate large CP violation as measured by Belle, $sin2phi_1|_{exp}simeq 1$, for $M_{W_R}=1 sim 10$ TeV.
Contributions to B - bar B mixing from physics beyond the standard model may be detected from CP-violating asymmetries in B decays. There exists the possibility of large new contributions that cannot be detected by first generation experiments because of a discrete ambiguity. Some possible strategies for resolving this are discussed.
We apply QCD factorization to the quasi two-body B ->(K pi) pi decays where the (K pi)-pair effective mass is limited to 1.8 GeV. Our strong interaction phases constrained by theory and pi-K experimental data yield useful information for studies of CP violation
We have analyzed how much the $CP$ angles to be measured at B factories can deviate from the geometrical ones defined in unitarity triangle under the existence of new physics. The measurements are given in rephasing invariant form. If KM matrix is not a $3times 3$ and unitary matrix, $tildephi_1$ and $tildephi_3$ is affected, and the value of $tildephi_3$ depends on the decay mode. The deviation is constrained to be less than the experimental precision attained in the next decade by the available data of the magnitude of KM matrix elements. Deviation of the sum of three angles from $pi$ cannot be detected unless new physics contributes significantly to $b$ decay or $D$ meson system.
CP-violation in the Higgs sector remains a possible source of the baryon asymmetry of the universe. Recent differential measurements of signed angular distributions in Higgs boson production provide a general experimental probe of the CP structure of Higgs boson interactions. We interpret these measurements using the Standard Model Effective Field Theory and show that they do not distinguish the various CP-violating operators that couple the Higgs and gauge fields. However, the constraints can be sharpened by measuring additional CP-sensitive observables and exploiting phase-space-dependent effects. Using these observables, we demonstrate that perturbatively meaningful constraints on CP-violating operators can be obtained at the LHC with luminosities of ${cal{O}}$(100/fb). Our results provide a roadmap to a global Higgs boson coupling analysis that includes CP-violating effects.