No Arabic abstract
The results obtained by the Working Group on Supersymmetry at the 1999 Les Houches Workshop on Collider Physics are summarized. Separate chapters treat general supersymmetry, R-parity violation, gauge mediated supersymmetry breaking, and anomaly mediated supersymmetry breaking.
This is the summary and introduction to the proceedings contributions for the Les Houches 2009 Tools and Monte Carlo working group.
This report documents the results obtained by the Working Group on Quantum Chromodynamics and the Standard Model for the Workshop `Physics at TeV Colliders, Les Houches, France, 26 May - 6 June 2003. After a Monte Guide description, the first contributions report on progress in describing multiple interactions, important for the LHC, and underlying events. An announcement of a Monte Carlo database, under construction, is then followed by a number of contributions improving parton shower descriptions. Subsequently, a large number of contributions address resummations in various forms, after which follow studies of QCD effects in pion pair, top quark pair and photon pair plus jet production. After a study of electroweak corrections to hadronic precision observables, the report ends by presenting recent progress in methods to compute finite order corrections at one-loop with many legs, and at two-loop.
The work contained herein constitutes a report of the Beyond the Standard Model working group for the Workshop Physics at TeV Colliders, Les Houches, France, 2-20 May, 2005. We present reviews of current topics as well as original research carried out for the workshop. Supersymmetric and non-supersymmetric models are studied, as well as computational tools designed in order to facilitate their phenomenology.
The work contained herein constitutes a report of the ``Beyond the Standard Model working group for the Workshop Physics at TeV Colliders, Les Houches, France, 26 May--6 June, 2003. The research presented is original, and was performed specifically for the workshop. Tools for calculations in the minimal supersymmetric standard model are presented, including a comparison of the dark matter relic density predicted by public codes. Reconstruction of supersymmetric particle masses at the LHC and a future linear collider facility is examined. Less orthodox supersymmetric signals such as non-pointing photons and R-parity violating signals are studied. Features of extra dimensional models are examined next, including measurement strategies for radions and Higgs, as well as the virtual effects of Kaluza Klein modes of gluons. An LHC search strategy for a heavy top found in many little Higgs model is presented and finally, there is an update on LHC $Z$ studies.
This Report summarises the activities of the SM and Higgs working group for the Workshop Physics at TeV Colliders, Les Houches, France, 2-20 May, 2005. On the one hand, we performed a variety of experimental and theoretical studies on standard candles (such as W, Z, and ttbar production), treating them either as proper signals of known physics, or as backgrounds to unknown physics; we also addressed issues relevant to those non-perturbative or semi-perturbative ingredients, such as Parton Density Functions and Underlying Events, whose understanding will be crucial for a proper simulation of the actual events taking place in the detectors. On the other hand, several channels for the production of the Higgs, or involving the Higgs, have been considered in some detail. The report is structured into four main parts. The first one deals with Standard Model physics, except the Higgs. A variety of arguments are treated here, from full simulation of processes constituting a background to Higgs production, to studies of uncertainties due to PDFs and to extrapolations of models for underlying events, from small-$x$ issues to electroweak corrections which may play a role in vector boson physics. The second part of the report treats Higgs physics from the point of view of the signal. In the third part, reviews are presented on the current status of multi-leg, next-to-leading order and of next-to-next-to-leading order QCD computations. Finally, the fourth part deals with the use of Monte Carlos for simulation of LHC physics.