Do you want to publish a course? Click here

New Numerical Methods for Quantum Field Theories on the Continuum

80   0   0.0 ( 0 )
 Added by Pinar Emirdag
 Publication date 1999
  fields
and research's language is English




Ask ChatGPT about the research

The Source Galerkin Method is a new numerical technique that is being developed to solve Quantum Field Theories on the continuum. It is not based on Monte Carlo techniques and has a measure to evaluate relative errors. It promises to increase the accuracy and speed of calculations, and takes full advantage of symmetries of the theory. The application of this method to the non-linear sigma model is outlined.



rate research

Read More

The Source Galerkin method finds approximate solutions to the functional differential equations of field theories in the presence of external sources. While developing this process, it was recognized that approximations of the spectral representations of the Greens functions by Sinc function expansions are an extremely powerful calculative tool. Specifically, this understanding makes it not only possible to apply the Source Galerkin method to higher dimensional field theories, but also leads to a new approach to perturbation theory calculations in scalar and fermionic field theories. This report summarizes the methodologies for solving quantum field theories with the Source Galerkin method and for performing perturbation theory calculations using Sinc approximations.
Supersymmetry is a prominent candidate for physics beyond the standard model. In order to compute the spectrum of supersymmetric theories, we employ nonperturbative lattice QFT techniques which due to the discretisation of spacetime violate supersymmetry at finite lattice spacings. Care has to be taken then to restore supersymmetry in the continuum limit. We discuss a discretisation of the supersymmetric Nonlinear O(N) Sigma model in two dimensions and argue that supersymmetry may be restored by finetuning of a single parameter. Furthermore, we show preliminary results for the vacuum physics of N = 2 Super-Yang-Mills theory in three dimensions.
Many non-Hermitian but PT-symmetric theories are known to have a real positive spectrum. Since the action is complex for there theories, Monte Carlo methods do not apply. In this paper the first field-theoretic method for numerical simulations of PT-symmetric Hamiltonians is presented. The method is the complex Langevin equation, which has been used previously to study complex Hamiltonians in statistical physics and in Minkowski space. We compute the equal-time one-point and two-point Greens functions in zero and one dimension, where comparisons to known results can be made. The method should also be applicable in four-dimensional space-time. Our approach may also give insight into how to formulate a probabilistic interpretation of PT-symmetric theories.
An approach to calculating approximate solutions to the continuum Schwinger-Dyson equations is outlined, with examples for phi^4 in D=1. This approach is based on the source Galerkin methods developed by Garcia, Guralnik and Lawson. Numerical issues and opportunities for future calculations are also discussed briefly.
The solution of gauge theories is one of the most promising applications of quantum technologies. Here, we discuss the approach to the continuum limit for $U(1)$ gauge theories regularized via finite-dimensional Hilbert spaces of quantum spin-$S$ operators, known as quantum link models. For quantum electrodynamics (QED) in one spatial dimension, we numerically demonstrate the continuum limit by extrapolating the ground state energy, the scalar, and the vector meson masses to large spin lengths $S$, large volume $N$, and vanishing lattice spacing $a$. By analytically solving Gauss law for arbitrary $S$, we obtain a generalized PXP spin model and count the physical Hilbert space dimension analytically. This allows us to quantify the required resources for reliable extrapolations to the continuum limit on quantum devices. We use a functional integral approach to relate the model with large values of half-integer spins to the physics at topological angle $Theta=pi$. Our findings indicate that quantum devices will in the foreseeable future be able to quantitatively probe the QED regime with quantum link models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا