The statistical properties of dynamically triangulated manifolds (DT mfds) in terms of the geodesic distance have been studied numerically. The string susceptibility exponents for the boundary surfaces in three-dimensional DT mfds were measured numerically. For spherical boundary surfaces, we obtained a result consistent with the case of a two-dimensional spherical DT surface described by the matrix model. This gives a correct method to reconstruct two-dimensional random surfaces from three-dimensional DT mfds. Furthermore, a scaling property of the volume distribution of minimum neck baby universes was investigated numerically in the case of three and four dimensions, and we obtain a common scaling structure near to the critical points belonging to the strong coupling phase in both dimensions. We have evidence for the existence of a common fractal structure in three- and four-dimensional simplicial quantum gravity.