Do you want to publish a course? Click here

The ``Spin Structure of the Nucleon - a lattice investigation

79   0   0.0 ( 0 )
 Added by R. Horsley
 Publication date 1993
  fields
and research's language is English




Ask ChatGPT about the research

We will discuss here an indirect lattice evaluation of the baryon axial singlet current matrix element. This quantity may be related to the fraction of nucleon spin carried by the quarks. The appropriate structure function has recently been measured (EMC experiment). As in this experiment, we find that the quarks do not appear to carry a large component of the nucleon spin.



rate research

Read More

We have initiated a programme to compute the lower moments of the unpolarised and polarised deep inelastic structure functions of the nucleon in the quenched approximation. We review our progress to date.
We investigate the quark content of the scalar meson $a_0(980)$ using lattice QCD. To this end we consider correlation functions of six different two- and four-quark interpolating fields. We evaluate all diagrams, including diagrams, where quarks propagate within a timeslice, e.g. with closed quark loops. We demonstrate that diagrams containing such closed quark loops have a drastic effect on the final results and, thus, may not be neglected. Our analysis shows that in addition to the expected spectrum of two-meson scattering states there is an additional energy level around the two-particle thresholds of $K + bar{K}$ and $eta + pi$. This additional state, which is a candidate for the $a_0(980)$ meson, couples to a quark-antiquark as well as to a diquark-antidiquark interpolating field, indicating that it is a superposition of an ordinary $bar{q} q$ and a tetraquark structure. The analysis is performed using AMIAS, a novel statistical method based on the sampling of all possible spectral decompositions of the considered correlation functions, as well as solving standard generalized eigenvalue problems.
130 - Wolfram Schroers 2005
This review focuses on the current status of lattice calculations of three observables which are both phenomenologically and experimentally relevant and have been scrutinized recently. These three observables are the nucleon electromagnetic form factors, the momentum fraction, <x>, and the nucleon axial coupling, gA.
We present a new analysis method that allows one to understand and model excited state contributions in observables that are dominated by a pion pole. We apply this method to extract axial and (induced) pseudoscalar nucleon isovector form factors, which satisfy the constraints due to the partial conservation of the axial current up to expected discretization effects. Effective field theory predicts that the leading contribution to the (induced) pseudoscalar form factor originates from an exchange of a virtual pion, and thus exhibits pion pole dominance. Using our new method, we can recover this behavior directly from lattice data. The numerical analysis is based on a large set of ensembles generated by the CLS effort, including physical pion masses, large volumes (with up to $96^3 times 192$ sites and $L m_pi = 6.4$), and lattice spacings down to $0.039 , text{fm}$, which allows us to take all the relevant limits. We find that some observables are much more sensitive to the choice of parametrization of the form factors than others. On the one hand, the $z$-expansion leads to significantly smaller values for the axial dipole mass than the dipole ansatz ($M_A^{text{$z$-exp}}=1.02(10) , text{GeV}$ versus $M_A^{text{dipole}} = 1.31(8) , text{GeV}$). On the other hand, we find that the result for the induced pseudoscalar coupling at the muon capture point is almost independent of the choice of parametrization ($g_P^{star text{$z$-exp}} = 8.68(45)$ and $g_P^{star text{dipole}} = 8.30(24)$), and is in good agreement with both, chiral perturbation theory predictions and experimental measurement via ordinary muon capture. We also determine the axial coupling constant $g_A$.
57 - Wolfram Schroers 2007
This review focuses on the discussion of three key results of nucleon structure calculations on the lattice. These three results are the quark contribution to the nucleon spin, J_q, the nucleon-Delta transition form factors, and the nucleon axial coupling, g_A. The importance for phenomenology and experiment is discussed and the requirements for future simulations are pointed out.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا