Do you want to publish a course? Click here

Charmonium Spectrum on dynamical anisotropic lattices

65   0   0.0 ( 0 )
 Added by Mehmet Oktay Dr
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We present a first study of the charmonium spectrum on N_f=2 dynamical, anisotropic lattices. We take advantage of all-to-all quark propagators to build spatially extended interpolating operators to increase the overlap with states not easily accessible with point propagators such as radially excited states of eta_c, psi, and chi_c, D-waves and hybrid states.



rate research

Read More

We present the results of quenched charmonium spectrum for S- and P-states, obtained by a relativistic heavy quark method on anisotropic lattices. Simulations are carried out using the standard plaquette gauge action and a meanfield-improved clover quark action at $a_t^{-1} = 3$--6 GeV with the renormalized anisotropy fixed to $xi equiv a_s/a_t =3$. We study the scaling of our fine and hyperfine mass splittings, and compare with previous results.
We present our final results of the charmonium spectrum in quenched QCD on anisotropic lattices. Simulations are made with the plaquette gauge action and a tadpole improved clover quark action employing $xi = a_s/a_t = 3$. We calculate the spectrum of S- and P-states and their excitation, and study the scaling behavior of mass splittings. Comparison is made with the experiment and previous lattice results. The issue of hyperfine splitting for different choices of the clover coefficients obtained by Klassen is discussed.
174 - X. Liao , T. Manke 2002
We present our final results for the excited charmonium spectrum from a quenched calculation using a fully relativistic anisotropic lattice QCD action. A detailed excited charmonium spectrum is obtained, including both the exotic hybrids (with $J^{PC} = 1^{-+}, 0^{+-}, 2^{+-}$) and orbitally excited mesons (with orbital angular momentum up to 3). Using three different lattice spacings (0.197, 0.131, and 0.092 fm), we perform a continuum extrapolation of the spectrum. We convert our results in lattice units to physical values using lattice scales set by the $^1P_1-1S$ splitting. The lowest lying exotic hybrid $1^{-+}$ lies at 4.428(41) GeV, slightly above the $D^{**}D$ (S+P wave) threshold of 4.287 GeV. Another two exotic hybrids $0^{+-}$ and $2^{+-}$ are determined to be 4.70(17) GeV and 4.895(88) GeV, respectively. Our finite volume analysis confirms that our lattices are large enough to accommodate all the excited states reported here.
We report on our study of two-flavor full QCD on anisotropic lattices using $O(a)$-improved Wilson quarks coupled with an RG-improved glue. The bare gauge and quark anisotropies corresponding to the renormalized anisotropy $xi=a_s/a_t = 2$ are determined as functions of $beta$ and $kappa$, using the Wilson loop and the meson dispersion relation at several lattice cutoffs and quark masses.
We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences of the improvement coefficients, i.e. the ratio of the hopping parameters $zeta=K_t/K_s$ and the clover coefficients $c_{s,t}$, are examined at the tree level. We then compute the charmonium spectrum in the quenched approximation employing $xi = a_s/a_t = 3$ anisotropic lattices. Simulations are made with the standard anisotropic gauge action and the anisotropic clover quark action at four lattice spacings in the range $a_s$=0.07-0.2 fm. The clover coefficients $c_{s,t}$ are estimated from tree-level tadpole improvement. On the other hand, for the ratio of the hopping parameters $zeta$, we adopt both the tree-level tadpole-improved value and a non-perturbative one. We calculate the spectrum of S- and P-states and their excitations. The results largely depend on the scale input even in the continuum limit, showing a quenching effect. When the lattice spacing is determined from the $1P-1S$ splitting, the deviation from the experimental value is estimated to be $sim$30% for the S-state hyperfine splitting and $sim$20% for the P-state fine structure. Our results are consistent with previous results at $xi = 2$ obtained by Chen when the lattice spacing is determined from the Sommer scale $r_0$. We also address the problem with the hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا