No Arabic abstract
We investigate the effects of low-lying fermion modes on the QCD partition function in the epsilon-regime. With the overlap Dirac operator we calculate several tens of low-lying fermion eigenvalues on the quenched lattice. By partially incorporating the fermion determinant through the truncated determinant approximation, we calculate the partition function and other related quantities for Nf = 1 and compare them with the theoretical predictions obtained by Leutwyler and Smilga.
We investigate the effects of low-lying fermion eigenmodes on the QCD partition function in the $epsilon$-regime. The fermion determinant is approximated by a truncated product of low-lying eigenvalues of the overlap-Dirac operator. With two flavors of dynamical quarks, we observe that the lattice results for the lowest eigenvalue distribution, eigenvalue sum rules and partition function reproduce the analytic predictions made by Leutwyler and Smilga, which strongly depend on the topological charge of the background gauge configuration. The value of chiral condensate extracted from these measurements are consistent with each other. For one dynamical quark flavor, on the other hand, we find an apparent disagreement among different determinations of the chiral condensate, which may suggest the failure of the $epsilon$-expansion in the absence of massless Nambu-Goldstone boson.
The positive-parity nucleon spectrum is explored in $2 + 1$-flavour lattice QCD in a search for new low-lying energy eigenstates near the energy regime of the Roper resonance. In addition to conventional three-quark operators, we consider novel, local five-quark meson-baryon type interpolating fields that hold the promise to reveal new eigenstates that may have been missed in previous analyses. Drawing on phenomenological insight, five-quark operators based on $sigma{N}$, $pi{N}$ and $a_0{N}$ channels are constructed. Spectra are produced in a high-statistics analysis on the PACS-CS dynamical gauge-field configurations with $m_{pi} = 411textrm{ MeV}$ via variational analyses of several operator combinations. Despite the introduction of qualitatively different interpolating fields, no new states are observed in the energy regime of the Roper resonance. This result provides further evidence that the low-lying finite-volume scattering states are not localised, and strengthens the interpretation of the Roper as a coupled-channel, dynamically-generated meson-baryon resonance.
We consider how to extract the pion form factors in the epsilon regime. Using the correlators with non-zero momenta and taking appropriate ratios of them, we eliminate the dominant finite volume effect from the zero-momentum pion mode. Our preliminary lattice result for the pion charge radius is consistent with the experiment.
We present a numerical pilot study of the meson correlation functions in the epsilon-regime of chiral perturbation theory. Based on simulations with overlap fermions we measured the axial and pseudo-scalar correlation functions, and we discuss the implications for the leading low energy constants in the chiral Lagrangian.
We present simulation results for lattice QCD with chiral fermions in small volumes, where the epsilon-expansion of chiral perturbation theory applies. Our data for the low lying Dirac eigenvalues, as well as mesonic correlation functions, are in agreement with analytical predictions. This allows us to extract values for the leading Low Energy Constants F_{pi} and Sigma.