No Arabic abstract
In Monte Carlo simulations of lattice field theory with a $theta$ term, one confronts the complex weight problem, or the sign problem. This is circumvented by performing the Fourier transform of the topological charge distribution $P(Q)$. This procedure, however, causes flattening phenomenon of the free energy $f(theta)$, which makes study of the phase structure unfeasible. In order to treat this problem, we apply the maximum entropy method (MEM) to a Gaussian form of $P(Q)$, which serves as a good example to test whether the MEM can be applied effectively to the $theta$ term. We study the case with flattening as well as that without flattening. In the latter case, the results of the MEM agree with those obtained from the direct application of the Fourier transform. For the former, the MEM gives a smoother $f(theta)$ than that of the Fourier transform. Among various default models investigated, the images which yield the least error do not show flattening, although some others cannot be excluded given the uncertainty related to statistical error.
A $theta$ term in lattice field theory causes the sign problem in Monte Carlo simulations. This problem can be circumvented by Fourier-transforming the topological charge distribution $P(Q)$. This strategy, however, has a limitation, because errors of $P(Q)$ prevent one from calculating the partition function ${cal Z}(theta)$ properly for large volumes. This is called flattening. As an alternative approach to the Fourier method, we utilize the maximum entropy method (MEM) to calculate ${cal Z}(theta)$. We apply the MEM to Monte Carlo data of the CP$^3$ model. It is found that in the non-flattening case, the result of the MEM agrees with that of the Fourier transform, while in the flattening case, the MEM gives smooth ${cal Z}(theta)$.
In Monte Carlo simulation, lattice field theory with a $theta$ term suffers from the sign problem. This problem can be circumvented by Fourier-transforming the topological charge distribution $P(Q)$. Although this strategy works well for small lattice volume, effect of errors of $P(Q)$ becomes serious with increasing volume and prevents one from studying the phase structure. This is called flattening. As an alternative approach, we apply the maximum entropy method (MEM) to the Gaussian $P(Q)$. It is found that the flattening could be much improved by use of the MEM.
The weak coupling region of CP$^{N-1}$ lattice field theory with the $theta$-term is investigated. Both the usual real theta method and the imaginary theta method are studied. The latter was first proposed by Bhanot and David. Azcoiti et al. proposed an inversion approach based on the imaginary theta method. The role of the inversion approach is investigated in this paper. A wide range of values of $h=-{rm Im} theta$ is studied, where $theta $ denotes the magnitude of the topological term. Step-like behavior in the $x$-$h$ relation (where $x=Q/V$, $Q$ is the topological charge, and $V$ is the two dimensional volume) is found in the weak coupling region. The physical meaning of the position of the step-like behavior is discussed. The inversion approach is applied to weak coupling regions.
We discuss a new strategy for treating the complex action problem of lattice field theories with a $theta$-term based on density of states (DoS) methods. The key ingredient is to use open boundary conditions where the topological charge is not quantized to integers and the density of states is sufficiently well behaved such that it can be computed precisely with recently developed DoS techniques. After a general discussion of the approach and the role of the boundary conditions, we analyze the method for 2-d U(1) lattice gauge theory with a $theta$-term, a model that can be solved in closed form. We show that in the continuum limit periodic and open boundary conditions describe the same physics and derive the DoS, demonstrating that only for open boundary conditions the density is sufficiently well behaved for a numerical evaluation. We conclude our proof of principle analysis with a small test simulation where we numerically compute the density and compare it with the analytical result.
We study the mass spectra of excited baryons with the use of the lattice QCD simulations. We focus our attention on the problem of the level ordering between the positive-parity excited state N(1440) (the Roper resonance) and the negative-parity excited state N^*(1535). Nearly perfect parity projection is accomplished by combining the quark propagators with periodic and anti-periodic boundary conditions in the temporal direction. Then we extract the spectral functions from the lattice data by utilizing the maximum entropy method. We observe that the masses of the N and N^* states are close for wide range of the quark masses (M_pi=0.61-1.22 GeV), which is in contrast to the phenomenological prediction of the quark models. The role of the Wilson doublers in the baryonic spectral functions is also studied.