No Arabic abstract
The spectrum of orbitally excited $D_s$ mesons is computed in the continuum limit of quenched lattice QCD. The results are consistent with the interpretation that the narrow resonance in the $D_s pi^0$ channel discovered by the BABAR Collaboration is a $J^P=0^+$ $cbar{s}$ meson. Furthermore, within statistical errors, the $1^+-1^-$ and the $0^+-0^-$ mass splittings are equal, in agreement with the chiral multiplet structure predicted by heavy hadron chiral effective theory. On our coarsest lattice we present results from the first study of orbitally excited $D_s$ mesons with two flavors of dynamical quarks, with mass slightly larger than the strange quark mass. These results are consistent with the quenched data.
We present ground state spectra of mesons containing a charm and a bottom quark. For the charm quark we use overlap valence quarks while a non-relativistic formulation is utilized for the bottom quark on a background of 2+1+1 flavors HISQ gauge configurations generated by the MILC collaboration. The hyperfine splitting between $1S$ states of $B_c$ mesons is found to be $56^{+4}_{-3}$ MeV. We also study the baryons containing only charm and bottom quarks and predict their ground state masses. Results are obtained at three lattice spacings.
We present the first lattice determination of the two lowest Gegenbauer moments of the leading-twist pion and kaon light-cone distribution amplitudes with full control of all errors. The calculation is carried out on 35 different CLS ensembles with $N_f=2+1$ flavors of dynamical Wilson-clover fermions. These cover a multitude of pion and kaon mass combinations (including the physical point) and 5 different lattice spacings down to $a=0.039,$fm. The momentum smearing technique and a new operator basis are employed to reduce statistical fluctuations and to improve the overlap with the ground states. The results are obtained from a combined chiral and continuum limit extrapolation that includes three separate trajectories in the quark mass plane. The present arXiv version (v3) includes an Addendum where we update the results using the recently calculated three-loop matching factors for the conversion from the RI/SMOM to the $overline{text{MS}}$ scheme. We find $a_2^pi=0.116^{+19}_{-20}$ for the pion, $a_1^K=0.0525^{+31}_{-33}$ and $a_2^K=0.106^{+15}_{-16}$ for the kaon. We also include the previous values, which were obtained with two-loop matching.
We determine the spectrum of $B_s$ 1P states using lattice QCD. For the $B_{s1}(5830)$ and $B_{s2}^*(5840)$ mesons, the results are in good agreement with the experimental values. Two further mesons are expected in the quantum channels $J^P=0^+$ and $1^+$ near the $BK$ and $B^{*}K$ thresholds. A combination of quark-antiquark and $B^{(*)}$ meson-Kaon interpolating fields are used to determine the mass of two QCD bound states below the $B^{(*)}K$ threshold, with the assumption that mixing with $B_s^{(*)}eta$ and isospin-violating decays to $B_s^{(*)}pi$ are negligible. We predict a $J^P=0^+$ bound state $B_{s0}$ with mass $m_{B_{s0}}=5.711(13)(19)$ GeV. With further assumptions motivated theoretically by the heavy quark limit, a bound state with $m_{B_{s1}}= 5.750(17)(19)$ GeV is predicted in the $J^P=1^+$ channel. The results from our first principles calculation are compared to previous model-based estimates.
We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences of the improvement coefficients, i.e. the ratio of the hopping parameters $zeta=K_t/K_s$ and the clover coefficients $c_{s,t}$, are examined at the tree level. We then compute the charmonium spectrum in the quenched approximation employing $xi = a_s/a_t = 3$ anisotropic lattices. Simulations are made with the standard anisotropic gauge action and the anisotropic clover quark action at four lattice spacings in the range $a_s$=0.07-0.2 fm. The clover coefficients $c_{s,t}$ are estimated from tree-level tadpole improvement. On the other hand, for the ratio of the hopping parameters $zeta$, we adopt both the tree-level tadpole-improved value and a non-perturbative one. We calculate the spectrum of S- and P-states and their excitations. The results largely depend on the scale input even in the continuum limit, showing a quenching effect. When the lattice spacing is determined from the $1P-1S$ splitting, the deviation from the experimental value is estimated to be $sim$30% for the S-state hyperfine splitting and $sim$20% for the P-state fine structure. Our results are consistent with previous results at $xi = 2$ obtained by Chen when the lattice spacing is determined from the Sommer scale $r_0$. We also address the problem with the hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum limit.
Since gluons in QCD are interacting fundamental constituents just as quarks are, we expect that in addition to mesons made from a quark and an antiquark, there should also be glueballs and hybrids (bound states of quarks, antiquarks and gluons). In general, these states would mix strongly with the conventional q-bar-q mesons. However, they can also have exotic quantum numbers inaccessible to q-bar-q mesons. Confirmation of such states would give information on the role of dynamical color in low energy QCD. In the quenched approximation we present a lattice calculation of the masses of mesons with exotic quantum numbers. These hybrid mesons can mix with four quark (q-bar-q-bar-q-q) states. The quenched approximation partially suppresses this mixing. Nonetheless, our hybrid interpolating fields also couple to four quark states. Using a four quark source operator, we demonstrate this mixing for the 1-+ meson. Using the conventional Wilson quark action, we calculate both at reasonably light quark masses, intending to extrapolate to small quark mass, and near the charmed quark mass, where we calculate the masses of some c-bar-c-g hybrid mesons. The hybrid meson masses are large --- over 4 GeV for charmonium and more than twice the vector meson mass at our smallest quark mass, which is near the strange quark mass.