Do you want to publish a course? Click here

Light Hadron Spectrum and Quark Masses from Quenched Lattice QCD

72   0   0.0 ( 0 )
 Added by Tomoteru Yoshie
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

We present details of simulations for the light hadron spectrum in quenched QCD carried out on the CP-PACS parallel computer. Simulations are made with the Wilson quark action and the plaquette gauge action on 32^3x56 - 64^3x112 lattices at four lattice spacings (a approx 0.1-0.05 fm) and the spatial extent of 3 fm. Hadronic observables are calculated at five quark masses (m_{PS}/m_V approx 0.75 - 0.4), assuming the u and d quarks being degenerate but treating the s quark separately. We find that the presence of quenched chiral singularities is supported from an analysis of the pseudoscalar meson data. We take m_pi, m_rho and m_K (or m_phi) as input. After chiral and continuum extrapolations, the agreement of the calculated mass spectrum with experiment is at a 10% level. In comparison with the statistical accuracy of 1-3% and systematic errors of at most 1.7% we have achieved, this demonstrates a failure of the quenched approximation for the hadron spectrum: the meson hyperfine splitting is too small, and the octet masses and the decuplet mass splittings are both smaller than experiment. Light quark masses are calculated using two definitions: the conventional one and the one based on the axial-vector Ward identity. The two results converge toward the continuum limit, yielding m_{ud}=4.29(14)^{+0.51}_{-0.79} MeV. The s quark mass depends on the strange hadron mass chosen for input: m_s = 113.8(2.3)^{+5.8}_{-2.9} MeV from m_K and m_s = 142.3(5.8)^{+22.0}_{-0} MeV from m_phi, indicating again a failure of the quenched approximation. We obtain Lambda_{bar{MS}}^{(0)}= 219.5(5.4) MeV. An O(10%) deviation from experiment is observed in the pseudoscalar meson decay constants.



rate research

Read More

We present the final results of the CP-PACS calculation of the light hadron spectrum and quark masses with two flavors of dynamical quarks. Simulations are made with a renormalization-group improved gauge action and a mean-field improved clover quark action for sea quark masses corresponding to $m_{rm PS}/m_{rm V} approx 0.8$--0.6 and the lattice spacing $a=0.22$--0.11 fm. For the meson spectrum in the continuum limit a clearly improved agreement with experiment is observed compared to the quenched case, demonstrating the importance of sea quark effects. For light quark masses we obtain $m_{ud}^{bar{MS}}(2GeV)=3.44^{+0.14}_{-0.22}$ MeV and $m_s^{bar{MS}}(2GeV)=88^{+4}_{-6}$ MeV ($K$-input) and $m_s^{bar{MS}}(2GeV)=90^{+5}_{-11}$ MeV ($phi$-input), which are reduced by about 25% compared to the values in quenched QCD.
CP-PACS and JLQCD collaborations are carrying out a joint project of the 2+1 flavor full QCD simulation. Gauge configurations are generated for the non-perturbatively $O(a)$-improved Wilson quark action and the Iwasaki gauge action using PHMC algorithm at three lattice spacings, $asim 0.076$, 0.010 and 0.122 fm, with a fixed physical volume $(2.0 fm)^3$. We present analysis for the light meson spectrum and quark masses in the continuum limit, which are determined using data obtained from the simulations at the two coarser lattices. Our simulations reproduce experimental values of meson masses. The ud and strange quark masses turn out to be $m_{ud}^{bar{MS}}(mu=2 GeV)=3.34(23) MeV$ and $m_s^{bar{MS}}(mu=2 GeV)=86.7(5.9) MeV$. We also show preliminary results at our finest lattice spacing for which simulations are still being continued.
We calculate the light meson spectrum and the light quark masses by lattice QCD simulation, treating all light quarks dynamically and employing the Iwasaki gluon action and the nonperturbatively O(a)-improved Wilson quark action. The calculations are made at the squared lattice spacings at an equal distance a^2~0.005, 0.01 and 0.015 fm^2, and the continuum limit is taken assuming an O(a^2) discretization error. The light meson spectrum is consistent with experiment. The up, down and strange quark masses in the bar{MS} scheme at 2 GeV are bar{m}=(m_{u}+m_{d})/2=3.55^{+0.65}_{-0.28} MeV and m_s=90.1^{+17.2}_{-6.1} MeV where the error includes statistical and all systematic errors added in quadrature. These values contain the previous estimates obtained with the dynamical u and d quarks within the error.
We present updated results of the CP-PACS calculation of the light hadron spectrum in $N_{rm f}=2$ full QCD. Simulations are made with an RG-improved gauge action and a tadpole-improved clover quark action for sea quark masses corresponding to $m_{rm PS}/m_{rm V} approx 0.8$--0.6 and the lattice spacing $a=0.22$--0.09 fm. A comparison of the full QCD spectrum with new quenched results, obtained with the same improved action, shows clearly the existence of sea quark effects in vector meson masses. Results for light quark masses in $N_{rm f}=2$ QCD are also presented.
We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences of the improvement coefficients, i.e. the ratio of the hopping parameters $zeta=K_t/K_s$ and the clover coefficients $c_{s,t}$, are examined at the tree level. We then compute the charmonium spectrum in the quenched approximation employing $xi = a_s/a_t = 3$ anisotropic lattices. Simulations are made with the standard anisotropic gauge action and the anisotropic clover quark action at four lattice spacings in the range $a_s$=0.07-0.2 fm. The clover coefficients $c_{s,t}$ are estimated from tree-level tadpole improvement. On the other hand, for the ratio of the hopping parameters $zeta$, we adopt both the tree-level tadpole-improved value and a non-perturbative one. We calculate the spectrum of S- and P-states and their excitations. The results largely depend on the scale input even in the continuum limit, showing a quenching effect. When the lattice spacing is determined from the $1P-1S$ splitting, the deviation from the experimental value is estimated to be $sim$30% for the S-state hyperfine splitting and $sim$20% for the P-state fine structure. Our results are consistent with previous results at $xi = 2$ obtained by Chen when the lattice spacing is determined from the Sommer scale $r_0$. We also address the problem with the hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا