We present a calculation of the mass of the lowest-lying negative-parity J=1/2- state in quenched QCD. Results are obtained using a non-perturbatively O(a)-improved clover fermion action, and a splitting is found between the mass of the nucleon and its parity partner. The calculation is performed on two lattice volumes and at three lattice spacings, enabling a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the unimproved Wilson fermion action.
We report on a sub-percent scale determination using the omega baryon mass and gradient-flow methods. The calculations are performed on 22 ensembles of $N_f=2+1+1$ highly improved, rooted staggered sea-quark configurations generated by the MILC and CalLat Collaborations. The valence quark action used is Mobius Domain-Wall fermions solved on these configurations after a gradient-flow smearing is applied with a flowtime of $t_{rm gf}=1$ in lattice units. The ensembles span four lattice spacings in the range $0.06 lesssim a lesssim 0.15$ fm, six pion masses in the range $130 lesssim m_pi lesssim 400$ MeV and multiple lattice volumes. On each ensemble, the gradient-flow scales $t_0/a^2$ and $w_0/a$ and the omega baryon mass $a m_Omega$ are computed. The dimensionless product of these quantities is then extrapolated to the continuum and infinite volume limits and interpolated to the physical light, strange and charm quark mass point in the isospin limit, resulting in the determination of $sqrt{t_0}=0.1422(14)$ fm and $w_0 = 0.1709(11)$ fm with all sources of statistical and systematic uncertainty accounted for. The dominant uncertainty in this result is the stochastic uncertainty, providing a clear path for a few-per-mille uncertainty, as recently obtained by the Budapest-Marseille-Wuppertal Collaboration.
We study the coupled pion-nucleon system (negative parity, isospin 1/2) based on a lattice QCD simulation for nf=2 mass degenerate light quarks. Both, standard 3-quarks baryon operators as well as meson-baryon (4+1)-quark operators are included. This is an exploratory study for just one lattice size and lattice spacing and at a pion mass of 266 MeV. Using the distillation method and variational analysis we determine energy levels of the lowest eigenstates. Comparison with the results of simple 3-quark correlation studies exhibits drastic differences and a new level appears. A clearer picture of the negative parity nucleon spectrum emerges. For the parameters of the simulation we may assume elastic s-wave scattering and can derive values of the phase shift.
We present a calculation of the lowest-lying baryon masses in the quenched approximation to QCD. The calculations are performed using a non-perturbatively improved clover fermion action, and a splitting is found between the masses of the nucleon and its parity partner. An analysis of the mass of the first radial excitation of the nucleon finds a value considerably larger than that of the parity partner of the nucleon, and thus little evidence for the Roper resonance as a simple three-quark state
The MILC collaborations simulations with improved staggered quarks are being extended with runs at a lattice spacing of 0.06 fm with quark masses down to one tenth the strange quark mass. We give a brief introduction to these new simulations and the determination of the lattice spacing. Then we combine these new runs with older results to study the masses of the nucleon and the Omega minus in the continuum and chiral limits.
We present a calculation of the up, down, strange and charm quark masses performed within the lattice QCD framework. We use the twisted mass fermion action and carry out simulations that include in the sea two light mass-degenerate quarks, as well as the strange and charm quarks. In the analysis we use gauge ensembles simulated at three values of the lattice spacing and with light quarks that correspond to pion masses in the range from 350 MeV to the physical value, while the strange and charm quark masses are tuned approximately to their physical values. We use several quantities to set the scale in order to check for finite lattice spacing effects and in the continuum limit we get compatible results. The quark mass renormalization is carried out non-perturbatively using the RI-MOM method converted into the $overline{rm MS}$ scheme. For the determination of the quark masses we use physical observables from both the meson and the baryon sectors, obtaining $m_{ud} = 3.636(66)(^{+60}_{-57})$~MeV and $m_s = 98.7(2.4)(^{+4.0}_{-3.2})$~MeV in the $overline{rm MS}(2,{rm GeV})$ scheme and $m_c = 1036(17)(^{+15}_{-8})$~MeV in the $overline{rm MS}(3,{rm GeV})$ scheme, where the first errors are statistical and the second ones are combinations of systematic errors. For the quark mass ratios we get $m_s / m_{ud} = 27.17(32)(^{+56}_{-38})$ and $m_c / m_s = 11.48(12)(^{+25}_{-19})$.