A D0 meson can decay to K+ pi- through doubly Cabibbo-suppressed decay or via D0-D0bar mixing. With 46.2 fb^{-1} of integrated luminosity collected by Belle, we have measured the time integrated rate of the wrong-sign process D0 -> K+ pi- relative to that of the Cabibbo-favored process D0 -> K- pi+ to be R_WS = (0.372 +- 0.025 +0.009/-0.014) % (preliminary). The D0-D0bar mixing parameters can be derived from the time distribution of the wrong-sign process.
A measurement of the rate for the wrong-sign decay D0 -> K+ pi- pi+ pi- relative to that for the right-sign decay D0 -> K- pi+ pi+ pi- is presented. Using 791 fb-1 of data collected with the Belle detector, we obtain a branching fraction ratio of R_WS = [0.324 +- 0.008 (stat) +- 0.007 (sys)]%. Multiplying this ratio by the world average value for the branching fraction B(D0 -> K- pi+ pi+ pi-) gives a branching fraction B(D0 -> K+ pi- pi+ pi-) = (2.61 +- 0.06 +0.09 -0.08) x 10-4.
The D0 meson can decay to the wrong sign K+pi- state either through a doubly Cabibbo suppressed decay or via mixing to the D0bar state followed by the Cabibbo favoured decay D0bar -> K+ pi-. We measure the rate of wrong sign decays relative to the Cabibbo favoured decay to (0.383 +- 0.044 +- 0.022)% and give our sensitivity to a mixing signal.
Measurements of charm mixing parameters from the decay-time-dependent ratio of D0->K+pi- to D0->K-pi+ rates and the charge-conjugate ratio are reported. The analysis uses data, corresponding to 3 fb^{-1} of integrated luminosity, from proton-proton collisions at 7 and 8 TeV center-of-mass energies recorded by the LHCb experiment. In the limit of charge-parity (CP) symmetry, the mixing parameters are determined to be x^2=(5.5 +- 4.9)x10^{-5}, y= (4.8 +- 1.0)x10^{-3}, and R_D=(3.568 +- 0.066)x10^{-3}. Allowing for CP violation, the mixing parameters are determined separately for D0 and D0bar mesons yielding A_D = (-0.7 +- 1.9)%, for the direct CP-violating asymmetry, and 0.75 < |q/p|< 1.24 at the 68.3% confidence level, where q and p are parameters that describe the mass eigenstates of the neutral charm mesons in terms of the flavor eigenstates. This is the most precise determination of these parameters from a single experiment and shows no evidence for CP violation.
First observations of the Cabibbo suppressed decays B0bar -->D+ K- pi+ pi- and B- --> D0 K- pi+ pi- are reported using 35 pb^{-1} of data collected with the LHCb detector. Their branching fractions are measured with respect to the corresponding Cabibbo favored decays, from which we obtain B(B0bar --> D+ K- pi+ pi-)/B(B0bar --> D+ pi- pi+ pi-)=(5.9pm1.1pm0.5) x 10^{-2} and B(B- --> D0 K- pi+ pi-)/B(B- --> D0 pi- pi+ pi-)=(9.4pm1.3pm0.9) x 10^{-2}, where the uncertainties are statistical and systematic, respectively. The B- --> D0 K- pi+ pi- decay is particularly interesting, as it can be used in a similar way to B- --> D0 K- to measure the CKM phase gamma.
A search for CP violation in the phase-space structures of D0 and D0bar decays to the final states K-K+pi-pi+ and pi-pi+pi+pi- is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0fb^-1 collected in 2011 by the LHCb experiment in $pp$ collisions at a centre-of-mass energy of 7TeV. For the K-K+pi-pi+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the pi-pi+pi+pi- final state is partitioned into 128 bins, each bin with approximately 2500 decays. The $p$-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity.