Do you want to publish a course? Click here

The Power Supply System of the CLEO III Silicon Detector

81   0   0.0 ( 0 )
 Added by Richard Kass
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

The CLEO III detector has recently commenced data taking at the Cornell electron Storage Ring (CESR). One important component of this detector is a 4 layer double-sided silicon tracker with 93% solid angle coverage. This detector ranges in size and number of readout channels between the LEP and LHC silicon detectors. In order to reach the detector performance goals of signal-to-noise ratios greater than 15:1 low noise front-end electronics together with highly regulated low noise power supplies were used. In this paper we describe the low-noise power supply system and associated monitoring and safety features used by the CLEO III silicon tracker.



rate research

Read More

66 - J. C. Wang 1999
We are constructing a Ring Imaging Cherenkov detector (RICH) for the CLEO III upgrade for precision charged hadron identification. The RICH uses plane and sawtooth LiF crystals as radiators, MWPCs as photon detectors with TEA as the photo-sensitive material, and low-noise Viking readout electronics. Results of a beam test of the first two out of total 30 sectors are presented.
51 - M. Artuso 2002
We briefly describe the design, construction and performance of the LiF-Tea RICH detector built to identify charged particles in the CLEO III experiment. Excellent pion/kaon separation is demonstrated.
97 - M. Artuso , R. Ayad , K. Bukin 2005
We describe the design, construction and performance of a Ring Imaging Cherenkov Detector (RICH) constructed to identify charged particles in the CLEO experiment. Cherenkov radiation occurs in LiF crystals, both planar and ones with a novel ``sawtooth-shaped exit surface. Photons in the wavelength interval 135--165 nm are detected using multi-wire chambers filled with a mixture of methane gas and triethylamine vapor. Excellent pion/kaon separation is demonstrated.
We describe a novel approach to particle-detector cooling in which a modular farm of active coolant-control platforms provides independent and regulated heat removal from four recently upgraded subsystems of the CLEO detector: the ring-imaging Cherenkov detector, the drift chamber, the silicon vertex detector, and the beryllium beam pipe. We report on several aspects of the system: the suitability of using the aliphatic-hydrocarbon solvent PF(TM)-200IG as a heat-transfer fluid, the sensor elements and the mechanical design of the farm platforms, a control system that is founded upon a commercial programmable logic controller employed in industrial process-control applications, and a diagnostic system based on virtual instrumentation. We summarize the systems performance and point out the potential application of the design to future high-energy physics apparatus.
The design, optimisation and construction of an anti-coincidence veto detector to complement the ZEPLIN-III direct dark matter search instrument is described. One tonne of plastic scintillator is arranged into 52 bars individually read out by photomultipliers and coupled to a gadolinium-loaded passive polypropylene shield. Particular attention has been paid to radiological content. The overall aim has been to achieve a veto detector of low threshold and high efficiency without the creation of additional background in ZEPLIN-III, all at a reasonable cost. Extensive experimental measurements of the components have been made, including radioactivity levels and performance characteristics. These have been used to inform a complete end-to-end Monte Carlo simulation that has then been used to calculate the expected performance of the new instrument, both operating alone and as an anti-coincidence detector for ZEPLIN-III. The veto device will be capable of rejecting over 65% of coincident nuclear recoil events from neutron background in the energy range of interest in ZEPLIN-III. This will reduce the background in ZEPLIN-III from ~0.4 to ~0.14 events per year in the WIMP acceptance region, a significant factor in the event of a non-zero observation. Furthermore, in addition to providing valuable diagnostic capabilities, the veto is capable of tagging over 15% for gamma-ray rejection, all whilst contributing no significant additional background. In conjunction with the replacement of the internal ZEPLIN-III photomultiplier array, the new veto is expected to improve significantly the sensitivity of the ZEPLIN-III instrument to dark matter, allowing spin independent WIMP-nucleon cross sections below 1E-8 pb to be probed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا