No Arabic abstract
The Bondi formula for calculation of the invariant mass in the Tolman- Bondi (TB) model is interprated as a transformation rule on the set of co-moving coordinates. The general procedure by which the three arbitrary functions of the TB model are determined explicitly is presented. The properties of the TB model, produced by the transformation rule are studied. Two applications are studied: for the falling TB flat model the equation of motion of two singularities hypersurfaces are obtained; for the expanding TB flat model the dependence of size of area with friedmann-like solution on initial conditions is studied in the limit $t to +infty$.
Boundary problem for Tolman-Bondi model is formulated. One-to-one correspondence between singularities hypersurfaces and initial conditions of the Tolman-Bondi model is constructed.
The Tolman-Bondi (TB) model is defined up to some transformation of a co-moving coordinate but the transformation is not fixed. The use of an arbitrary co-moving system of coordinates leads to the solution dependent on three functions $f, F, {bf F}$ which are chosen independently in applications. The article studies the transformation rule which is given by the definition of an invariant mass. It is shown that the addition of the TB model by the definition of the transformation rule leads to the separation of the couples of functions ($f, F$) into nonintersecting classes. It is shown that every class is characterized only by the dependence of $F$ on $f$ and connected with unique system of co-moving coordinates. It is shown that the Ruban-Chernin system of coordinates corresponds to identical transformation. The dependence of Bonnors solution on the Ruban-Chernin coordinate $M$ by means of initial density and energy distribution is studied. It is shown that the simplest flat solution is reduced to an explicit dependence on the coordinate $M$. Several examples of initial conditions and transformation rules are studied.
This work provides a general discussion of the spatially inhomogeneous Lema^itre-Tolman-Bondi (LTB) cosmology, as well as its basic properties and many useful relevant quantities, such as the cosmological distances. We apply the concept of the single null geodesic to produce some simple analytical solutions for observational quantities such as the redshift. As an application of the single null geodesic technique, we carry out a fractal approach to the parabolic LTB model, comparing it to the spatially homogeneous Einstein-de Sitter cosmology. The results obtained indicate that the standard model, in this case represented by the Einstein-de Sitter cosmology, can be equivalently described by a fractal distribution of matter, as we found that different single fractal dimensions describe different scale ranges of the parabolic LTB matter distribution. It is shown that at large ranges the parabolic LTB model with fractal dimension equal to 0.5 approximates the matter distribution of the Einstein-de Sitter universe.
The Maxwell electromagnetic theory embedded in an inhomogeneous Lema^{i}tre-Tolman-Bondi (LTB) spacetime background was described a few years back in the literature. However, terms concerning the mass or high-derivatives were no explored. In this work we studied the inhomogeneous spacetime effects on high-derivatives and massive electromagnetic models. We used the LTB metric and calculated the physical quantities of interest, namely the scale factor, density of the electromagnetic field and Hubble constant, for the Proca and higher-derivative Podolsky models. We found a new singularity in both models, and that the magnetic field must be zero in the Proca model.
We provide a formula for estimating the redshift and its secular change (redshift drift) in Lema^itre-Tolman-Bondi (LTB) spherically symmetric universes. We compute the scaling of the redshift drift for LTB models that predict Hubble diagrams indistinguishable from those of the standard cosmological model, the flat $Lambda$ Cold Dark Matter ($Lambda$CDM) model. We show that the redshift drift for these degenerate LTB models is typically different from that predicted in the $Lambda$CDM scenario. We also highlight and discuss some unconventional redshift-drift signals that arise in LTB universes and give them distinctive features compared to the standard model. We argue that the redshift drift is a metric observable that allows to reduce the degrees of freedom of spherically symmetric models and to make them more predictive and thus falsifiable.