No Arabic abstract
In this paper we discuss the quantum potential approach of Bohm in the context of quantum cosmological model. This approach makes it possible to convert the wavefunction of the universe to a set of equations describing the time evolution of the universe. Following Ashtekar et. al., we make use of quantum canonical transformation to cast a class of quantum cosmological models to a simple form in which they can be solved explicitly, and then we use the solutions do recover the time evolution.
In this paper we discuss the quantum potential approach of Bohm in the context of quantum cosmological model. This approach makes it possible to convert the wavefunction of the universe to a set of equations describing the time evolution of the universe. Following Ashtekar et. al., we make use of quantum canonical transformation to cast a class of quantum cosmological models to a simple form in which they can be solved explicitly, and then we use the solutions to recover the time evolution.
The dynamics of closed scalar field FRW cosmological models is studied for several types of exponentially and more than exponentially steep potentials. The parameters of scalar field potentials which allow a chaotic behaviour are found from numerical investigations. It is argued that analytical studies of equation of motion at the Euclidean boundary can provide an important information about the properties of chaotic dynamics. Several types of transition from chaotic to regular dynamics are described.
In the functional Schrodinger formalism, we obtain the wave function describing collapsing dust in an anti-de Sitter background, as seen by a co-moving observer, by mapping the resulting variable mass Schrodinger equation to that of the quantum isotonic oscillator. Using this wave function, we perform a causal de Broglie-Bohm analysis, and obtain the corresponding quantum potential. We construct a bouncing geometry via a disformal transformation, incorporating quantum effects. We derive the external solution that matches with this smoothly, and is also quantum corrected. Due to a pressure term originating from the quantum potential, an initially collapsing solution with a negative cosmological constant bounces back after reaching a minimum radius, and thereby avoids the classical singularity predicted by general relativity.
The Friedmann-Robertson-Walker (FRW) cosmology is analyzed with a general potential $rm V(phi)$ in the scalar field inflation scenario. The Bohmian approach (a WKB-like formalism) was employed in order to constraint a generic form of potential to the most suited to drive inflation, from here a family of potentials emerges; in particular we select an exponential potential as the first non trivial case and remains the object of interest of this work. The solution to the Wheeler-DeWitt (WDW) equation is also obtained for the selected potential in this scheme. Using Hamiltons approach and equations of motion for a scalar field $rm phi$ with standard kinetic energy, we find the exact solutions to the complete set of Einstein-Klein-Gordon (EKG) equations without the need of the slow-roll approximation (SR). In order to contrast this model with observational data (Planck 2018 results), the inflationary observables: the tensor-to-scalar ratio and the scalar spectral index are derived in our proper time, and then evaluated under the proper condition such as the number of e-folding corresponds exactly at 50-60 before inflation ends. The employed method exhibits a remarkable simplicity with rather interesting applications in the near future.
Inflationary spatially homogeneous cosmological models within an Einstein-Aether gravitational framework are investigated. The matter source is assumed to be a scalar field which is coupled to the aether field expansion and shear scalars through the generalized harmonic scalar field potential. The evolution equations are expressed in terms of expansion-normalized variables to produce an autonomous system of ordinary differential equations suitable for numerical and local stability analysis. An analysis of the local stability of the equilibrium points indicate that there exists a range of values of the parameters in which there exists an accelerating expansionary future attractor.