Do you want to publish a course? Click here

Higher dimensional global monopole with cosmological term

138   0   0.0 ( 0 )
 Added by Farook Rahaman
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the space-time of a global monopole in a five dimensional space-time in presence of the cosmological term. Also the gravitational properties of the monopole solution are discussed.



rate research

Read More

315 - F.Rahaman , K.Maity , P.Ghosh 2007
We present a five dimensional global monopole within the framework of Lyra geometry. Also the gravitational field of the monopole solution has been considered.
117 - S. T. Hong , J. Lee , T. H. Lee 2008
We consider a higher dimensional gravity theory with a negative kinetic energy scalar field and a cosmological constant. We find that the theory admits an exact cosmological solution for the scale factor of our universe. It has the feature that the universe undergoes a continuous transition from deceleration to acceleration at some finite time. This transition time can be interpreted as that of recent acceleration of our universe.
The Szekeres system with cosmological constant term describes the evolution of the kinematic quantities for Einstein field equations in $mathbb{R}^4$. In this study, we investigate the behavior of trajectories in the presence of cosmological constant. It has been shown that the Szekeres system is a Hamiltonian dynamical system. It admits at least two conservation laws, $h$ and $I_{0}$ which indicate the integrability of the Hamiltonian system. We solve the Hamilton-Jacobi equation, and we reduce the Szekeres system from $mathbb{R}^4$ to an equivalent system defined in $mathbb{R}^2$. Global dynamics are studied where we find that there exists an attractor in the finite regime only for positive valued cosmological constant and $I_0<2.08$. Otherwise, trajectories reach infinity. For $I_ {0}>0$ the origin of trajectories in $mathbb{R}^2$ is also at infinity. Finally, we investigate the evolution of physical properties by using dimensionless variables different from that of Hubble-normalization conducing to a dynamical system in $mathbb{R}^5$. We see that the attractor at the finite regime in $mathbb{R}^5$ is related with the de Sitter universe for a positive cosmological constant.
In this paper the $f(R)$ global monopole is reexamined. We provide an exact solution for the modified field equations in the presence of a global monopole for regions outside its core, generalizing previous results. Additionally, we discuss some particular cases obtained from this solution. We consider a setup consisting of a possible Schwarzschild black hole that absorbs the topological defect, giving rise to a static black hole endowed with a monopoles charge. Besides, we demonstrate how the asymptotic behavior of the Higgs field far from the monopoles core is shaped by a class of spacetime metrics which includes those ones analyzed here. In order to assess the gravitational properties of this system, we analyse the geodesic motion of both massive and massless test particles moving in the vicinity of such configuration. For the material particles we set the requirements they have to obey in order to experience stable orbits. On the other hand, for the photons we investigate how their trajectories are affected by the gravitational field of this black hole.
We investigate a cosmological model resulting from a dimensional reduction of the higher-dimensional dRGT massive gravity. By using the Kaluza-Klein dimensional reduction, we obtain an effective four-dimensional massive gravity theory with a scalar field. It is found that the resulting theory corresponds to a combined description of mass-varying massive gravity and quasi-dilaton massive gravity. By analyzing the cosmological solution, we found that it is possible to obtain the late-time expansion of the universe due to the graviton mass. By using a dynamical system approach, we found regions of model parameters for which the late-time expansion of the universe is a stable fixed point. Moreover, this also provides a mechanism to stabilize the extra dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا