Curvature singularities and abstract boundary singularity theorems for space-time


Abstract in English

The abstract boundary construction of Scott and Szekeres is a general and flexible way to define singularities in General Relativity. The abstract boundary construction also proves of great utility when applied to questions about more general boundary features of space-time. Within this construction an essential singularity is a non-regular boundary point which is accessible by a curve of interest (e.g. a geodesic) within finite (affine) parameter distance and is not removable. Ashley and Scott proved the first theorem linking abstract boundary essential singularities with the notion of causal geodesic incompleteness for strongly causal, maximally extended space-times. The relationship between this result and the classical singularity theorems of Penrose and Hawking has enabled us to obtain abstract boundary singularity theorems. This paper describes essential singularity results for maximally extended space-times and presents our recent efforts to establish a relationship between the strong curvature singularities of Tipler and Krolak and abstract boundary essential singularities.

Download