No Arabic abstract
The abstract boundary construction of Scott and Szekeres is a general and flexible way to define singularities in General Relativity. The abstract boundary construction also proves of great utility when applied to questions about more general boundary features of space-time. Within this construction an essential singularity is a non-regular boundary point which is accessible by a curve of interest (e.g. a geodesic) within finite (affine) parameter distance and is not removable. Ashley and Scott proved the first theorem linking abstract boundary essential singularities with the notion of causal geodesic incompleteness for strongly causal, maximally extended space-times. The relationship between this result and the classical singularity theorems of Penrose and Hawking has enabled us to obtain abstract boundary singularity theorems. This paper describes essential singularity results for maximally extended space-times and presents our recent efforts to establish a relationship between the strong curvature singularities of Tipler and Krolak and abstract boundary essential singularities.
The Abstract Boundary singularity theorem was first proven by Ashley and Scott. It links the existence of incomplete causal geodesics in strongly causal, maximally extended spacetimes to the existence of Abstract Boundary essential singularities, i.e., non-removable singular boundary points. We give two generalizations of this theorem: the first to continuous causal curves and the distinguishing condition, the second to locally Lipschitz curves in manifolds such that no inextendible locally Lipschitz curve is totally imprisoned. To do this we extend generalized affine parameters from $C^1$ curves to locally Lipschitz curves.
Singularities play an important role in General Relativity and have been shown to be an inherent feature of most physically reasonable space-times. Despite this, there are many aspects of singularities that are not qualitatively or quantitatively understood. The abstract boundary construction of Scott and Szekeres has proven to be a flexible tool with which to study the singular points of a manifold. The abstract boundary construction provides a boundary for any n-dimensional, paracompact, connected, Hausdorff, smooth manifold. Singularities may then be defined as entities in this boundary - the abstract boundary. In this paper a topology is defined, for the first time, for a manifold together with its abstract boundary. This topology, referred to as the attached point topology, thereby provides us with a description of how the abstract boundary is related to the underlying manifold. A number of interesting properties of the topology are considered, and in particular, it is demonstrated that the attached point topology is Hausdorff.
The abstract boundary construction of Scott and Szekeres provides a `boundary for any n-dimensional, paracompact, connected, Hausdorff, smooth manifold. Singularities may then be defined as objects within this boundary. In a previous paper by the authors, a topology referred to as the attached point topology was defined for a manifold and its abstract boundary, thereby providing us with a description of how the abstract boundary is related to the underlying manifold. In this paper, a second topology, referred to as the strongly attached point topology, is presented for the abstract boundary construction. Whereas the abstract boundary was effectively disconnected from the manifold in the attached point topology, it is very much connected in the strongly attached point topology. A number of other interesting properties of the strongly attached point topology are considered, each of which support the idea that it is a very natural and appropriate topology for a manifold and its abstract boundary.
We derive a generalized Gross-Pitaevski (GP) equation immersed on a electromagnetic and a weak gravitational field starting from the covariant Complex Klein-Gordon field in a curved space-time. We compare it with the GP equation where the gravitational field is added by hand as an external potential. We show that there is a small difference of order $g z/c^2$ between them that could be measured in the future using Bose-Einstein Condensates (BEC). This represents the next order correction to the Newtonian gravity in a curved space-time.
Boundary problem for Tolman-Bondi model is formulated. One-to-one correspondence between singularities hypersurfaces and initial conditions of the Tolman-Bondi model is constructed.