No Arabic abstract
We extend the description of gravitational waves emitted by binary black holes during the final stages of inspiral and merger by introducing in the third post-Newtonian (3PN) effective-one-body (EOB) templates seven new ``flexibility parameters that affect the two-body dynamics and gravitational radiation emission. The plausible ranges of these flexibility parameters, notably the parameter characterising the fourth post-Newtonian effects in the dynamics, are estimated. Using these estimates, we show that the currently available standard 3PN bank of EOB templates does ``span the space of signals opened up by all the flexibility parameters, in that their maximized mutual overlaps are larger than 96.5%. This confirms the effectualness of 3PN EOB templates for the detection of binary black holes in gravitational-wave data from interferometric detectors. The possibility to drastically reduce the number of EOB templates using a few ``universal phasing functions is suggested.
We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.
We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20) Msun coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for non-spinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with non-spinning components of mass between 19 and 28 Msun of 3.3 times 10^-7 mergers /Mpc^3 /yr.
In the adiabatic post-Newtonian (PN) approximation, the phase evolution of gravitational waves (GWs) from inspiralling compact binaries in quasicircular orbits is computed by equating the change in binding energy with the GW flux. This energy balance equation can be solved in different ways, which result in multiple approximants of the PN waveforms. Due to the poor convergence of the PN expansion, these approximants tend to differ from each other during the late inspiral. Which of these approximants should be chosen as templates for detection and parameter estimation of GWs from inspiraling compact binaries is not obvious. In this paper, we present estimates of the effective higher order (beyond the currently available 4PN and 3.5PN) non-spinning terms in the PN expansion of the binding energy and the GW flux that minimize the difference of multiple PN approximants (TaylorT1, TaylorT2, TaylorT4, TaylorF2) with effective one body waveforms calibrated to numerical relativity (EOBNR). We show that PN approximants constructed using the effective higher order terms show significantly better agreement (as compared to 3.5PN) with the inspiral part of the EOBNR. For non-spinning binaries with component masses $m_{1,2} in [1.4 M_odot, 15 M_odot]$, most of the approximants have a match (faithfulness) of better than 99% with both EOBNR and each other.
The merger of a binary black hole gives birth to a highly distorted final black hole. The gravitational radiation emitted as this black hole relaxes presents us with the unique opportunity to probe extreme gravity and its connection with the dynamics of the black hole horizon. Using numerical relativity simulations, we demonstrate a connection between a concrete observable feature in the gravitational waves and geometrical features on the dynamical apparent horizon of the final black hole. Specifically, we show how the line-of-sight passage of a cusp-like defect on the horizon of the final black hole correlates with chirp-like frequency peaks in the post-merger gravitational-waves. These post-merger chirps should be observed and analyzed as the sensitivity of LIGO and Virgo increases and as future generation detectors, such as LISA and the Einstein Telescope, become operational.
We apply machine learning methods to build a time-domain model for gravitational waveforms from binary black hole mergers, called mlgw. The dimensionality of the problem is handled by representing the waveforms amplitude and phase using a principal component analysis. We train mlgw on about $mathcal{O}(10^3)$ TEOBResumS and SEOBNRv4 effective-one-body waveforms with mass ratios $qin[1,20]$ and aligned dimensionless spins $sin[-0.80,0.95]$. The resulting models are faithful to the training sets at the ${sim}10^{-3}$ level (averaged on the parameter space). The speed up for a single waveform generation is a factor 10 to 50 (depending on the binary mass and initial frequency) for TEOBResumS and approximately an order of magnitude more for SEOBNRv4. Furthermore, mlgw provides a closed form expression for the waveform and its gradient with respect to the orbital parameters; such an information might be useful for future improvements in GW data analysis. As demonstration of the capabilities of mlgw to perform a full parameter estimation, we re-analyze the public data from the first GW transient catalog (GWTC-1). We find broadly consistent results with previous analyses at a fraction of the cost, although the analysis with spin aligned waveforms gives systematic larger values of the effective spins with respect to previous analyses with precessing waveforms. Since the generation time does not depend on the length of the signal, our model is particularly suitable for the analysis of the long signals that are expected to be detected by third-generation detectors. Future applications include the analysis of waveform systematics and model selection in parameter estimation.