Do you want to publish a course? Click here

Cosmic strings and strings in gravitational waves

60   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider strings with the Nambu action as extremal surfaces in a given space-time, thus, we ignore their back reaction. Especially, we look for strings sharing one symmetry with the underlying space-time. If this is a non-null symmetry, the problem of determining the motion of the string can be dimensionally reduced. We get exact solutions for the following cases: straight and circle-like strings in a Friedmann background, straight strings in an anisotropic Kasner background, different types of strings in the metric of a gravitational wave. The solutions will be discussed.



rate research

Read More

The nonlinear memory effect is a fascinating prediction of general relativity (GR), in which oscillatory gravitational-wave (GW) signals are generically accompanied by a monotonically-increasing strain which persists in the detector long after the signal has passed. This effect presents a unique opportunity to test GR in the dynamical and nonlinear regime. In this article we calculate the nonlinear memory signal associated with GW bursts from cusps and kinks on cosmic string loops, which are an important target for current and future GW observatories. We obtain analytical waveforms for the GW memory from cusps and kinks, and use these to calculate the memory of the memory and other higher-order memory effects. These are among the first memory observables computed for a cosmological source of GWs, with previous literature having focused almost entirely on astrophysical sources. Surprisingly, we find that the cusp GW signal diverges for sufficiently large loops, and argue that the most plausible explanation for this divergence is a breakdown in the weak-field treatment of GW emission from the cusp. This shows that previously-neglected strong gravity effects must play an important role near cusps, although the exact mechanism by which they cure the divergence is not currently understood. We show that one possible resolution is for these cusps to collapse to form primordial black holes (PBHs); the kink memory signal does not diverge, in agreement with the fact that kinks are not predicted to form PBHs. Finally, we investigate the prospects for detecting memory from cusps and kinks with GW observatories. We find that in the scenario where the cusp memory divergence is cured by PBH formation, the memory signal is strongly suppressed and is not likely to be detected. However, alternative resolutions of the cusp divergence may in principle lead to much more favourable observational prospects.
We present a successful realization of sneutrino tribrid inflation model based on a gauged $U(1)_{B-L}$ extension of Minimal Supersymmetric Standard Model (MSSM). A single interaction term involving the $B-L$ Higgs field and the right-handed neutrinos serves multiple purposes. These include the generation of heavy Majorana masses for the right-handed neutrinos to provide an explanation for the tiny neutrino masses via the seesaw mechanism, a realistic scenario for reheating and non-thermal leptogenesis with a reheat temperature as low as $10^6$ GeV, and a successful realization of inflation with right-handed sneutrino as the inflaton. The matter parity which helps avoid rapid proton decay survives as a $Z_{2}$ subgroup of a $U(1)$ $R$-symmetry. Depending on the choice of model parameters yields the following predicted range of the tensor to scalar ratio, $3 times 10^{-11}lesssim rlesssim 7times 10^{-4}$ ($ 6 times 10^{-7} lesssim r lesssim 0.01 $), and the running of the scalar spectral index, $-0.00022 lesssim dn_s/dln k lesssim -0.0026$ ($-0.00014 lesssim dn_s/dln k lesssim 0.005$), along with the $B-L$ breaking scale, $ 3 times 10^{14}lesssim M/ text{GeV}lesssim 5 times 10^{15}$ ($ 6 times 10^{15}lesssim M/ text{GeV}lesssim 2 times 10^{16}$), calculated at the central value of the scalar spectral index, $n_s =0.966$, reported by Planck 2018. The possibility of realizing metastable cosmic strings in a grand unified theory setup is briefly discussed. The metastable cosmic string network admits string tension values in the range $10^{-8} lesssim Gmu_s lesssim 10^{-6}$, and predicts a stochastic gravitational wave background lying within the 2-$sigma$ bounds of the recent NANOGrav 12.5-yr data.
186 - J. Aasi , J. Abadie , B. P. Abbott 2013
Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension $Gmu$ below $10^{-8}$ in some regions of the cosmic string parameter space.
84 - Barak Shoshany 2019
Spin networks, the quantum states of discrete geometry in loop quantum gravity, are directed graphs whose links are labeled by irreducible representations of SU(2), or spins. Cosmic strings are 1-dimensional topological defects carrying distributional curvature in an otherwise flat spacetime. In this paper we prove that the classical phase space of spin networks coupled to cosmic strings may obtained as a straightforward discretization of general relativity in 3+1 spacetime dimensions. We decompose the continuous spatial geometry into 3-dimensional cells, which are dual to a spin network graph in a unique and well-defined way. Assuming that the geometry may only be probed by holonomies (or Wilson loops) located on the spin network, we truncate the geometry such that the cells become flat and the curvature is concentrated at the edges of the cells, which we then interpret as a network of cosmic strings. The discrete phase space thus describes a spin network coupled to cosmic strings. This work proves that the relation between gravity and spin networks exists not only at the quantum level, but already at the classical level. Two appendices provide detailed derivations of the Ashtekar formulation of gravity as a Yang-Mills theory and the distributional geometry of cosmic strings in this formulation.
102 - Erwan Allys 2015
We study the realistic structure of F-term Nambu-Goto cosmic strings forming in a general supersymmetric Grand Unified Theory implementation, assuming standard hybrid inflation. Examining the symmetry breaking of the unification gauge group down to the Standard Model, we discuss the minimal field content necessary to describe abelian cosmic strings appearing at the end of inflation. We find that several fields will condense in most theories, questioning the plausible occurrence of associated currents (bosonic and fermionic). We perturbatively evaluate the modification of their energy per unit length due to the condensates. We provide a criterion for comparing the usual abelian Higgs approximation used in cosmology to realistic situations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا