No Arabic abstract
We present a new, systematic approach for analyzing network topologies. We first introduce the dK-series of probability distributions specifying all degree correlations within d-sized subgraphs of a given graph G. Increasing values of d capture progressively more properties of G at the cost of more complex representation of the probability distribution. Using this series, we can quantitatively measure the distance between two graphs and construct random graphs that accurately reproduce virtually all metrics proposed in the literature. The nature of the dK-series implies that it will also capture any future metrics that may be proposed. Using our approach, we construct graphs for d=0,1,2,3 and demonstrate that these graphs reproduce, with increasing accuracy, important properties of measured and modeled Internet topologies. We find that the d=2 case is sufficient for most practical purposes, while d=3 essentially reconstructs the Internet AS- and router-level topologies exactly. We hope that a systematic method to analyze and synthesize topologies offers a significant improvement to the set of tools available to network topology and protocol researchers.
We consider data losses in a single node of a packet-switched Internet-like network. We employ two distinct models, one with discrete and the other with continuous one-dimensional random walks, representing the state of a queue in a router. Both models {have} a built-in critical behavior with {a sharp} transition from exponentially small to finite losses. It turns out that the finite capacity of a buffer and the packet-dropping procedure give rise to specific boundary conditions which lead to strong loss rate fluctuations at the critical point even in the absence of such fluctuations in the data arrival process.
Inverse phase transitions are striking phenomena in which an apparently more ordered state disorders under cooling. This behavior can naturally emerge in tricritical systems on heterogeneous networks and it is strongly enhanced by the presence of disassortative degree correlations. We show it both analytically and numerically, providing also a microscopic interpretation of inverse transitions in terms of freezing of sparse subgraphs and coupling renormalization.
Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree. Conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an efficient and exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is O(NM) where N is the number of nodes and M is the number of edges.
We introduce a continuum model describing data losses in a single node of a packet-switched network (like the Internet) which preserves the discrete nature of the data loss process. {em By construction}, the model has critical behavior with a sharp transition from exponentially small to finite losses with increasing data arrival rate. We show that such a model exhibits strong fluctuations in the loss rate at the critical point and non-Markovian power-law correlations in time, in spite of the Markovian character of the data arrival process. The continuum model allows for rather general incoming data packet distributions and can be naturally generalized to consider the buffer server idleness statistics.
We study the robustness properties of multiplex networks consisting of multiple layers of distinct types of links, focusing on the role of correlations between degrees of a node in different layers. We use generating function formalism to address various notions of the network robustness relevant to multiplex networks such as the resilience of ordinary- and mutual connectivity under random or targeted node removals as well as the biconnectivity. We found that correlated coupling can affect the structural robustness of multiplex networks in diverse fashion. For example, for maximally-correlated duplex networks, all pairs of nodes in the giant component are connected via at least two independent paths and network structure is highly resilient to random failure. In contrast, anti-correlated duplex networks are on one hand robust against targeted attack on high-degree nodes, but on the other hand they can be vulnerable to random failure.