Do you want to publish a course? Click here

Generating Multilingual Personalized Descriptions of Museum Exhibits - The M-PIRO Project

326   0   0.0 ( 0 )
 Added by Ion Androutsopoulos
 Publication date 2001
and research's language is English




Ask ChatGPT about the research

This paper provides an overall presentation of the M-PIRO project. M-PIRO is developing technology that will allow museums to generate automatically textual or spoken descriptions of exhibits for collections available over the Web or in virtual reality environments. The descriptions are generated in several languages from information in a language-independent database and small fragments of text, and they can be tailored according to the backgrounds of the users, their ages, and their previous interaction with the system. An authoring tool allows museum curators to update the systems database and to control the language and content of the resulting descriptions. Although the project is still in progress, a Web-based demonstrator that supports English, Greek and Italian is already available, and it is used throughout the paper to highlight the capabilities of the emerging technology.



rate research

Read More

We present NaturalOWL, a natural language generation system that produces texts describing individuals or classes of OWL ontologies. Unlike simpler OWL verbalizers, which typically express a single axiom at a time in controlled, often not entirely fluent natural language primarily for the benefit of domain experts, we aim to generate fluent and coherent multi-sentence texts for end-users. With a system like NaturalOWL, one can publish information in OWL on the Web, along with automatically produced corresponding texts in multiple languages, making the information accessible not only to computer programs and domain experts, but also end-users. We discuss the processing stages of NaturalOWL, the optional domain-dependent linguistic resources that the system can use at each stage, and why they are useful. We also present trials showing that when the domain-dependent llinguistic resources are available, NaturalOWL produces significantly better texts compared to a simpler verbalizer, and that the resources can be created with relatively light effort.
Conventional approaches to personalized dialogue generation typically require a large corpus, as well as predefined persona information. However, in a real-world setting, neither a large corpus of training data nor persona information are readily available. To address these practical limitations, we propose a novel multi-task meta-learning approach which involves training a model to adapt to new personas without relying on a large corpus, or on any predefined persona information. Instead, the model is tasked with generating personalized responses based on only the dialogue context. Unlike prior work, our approach leverages on the provided persona information only during training via the introduction of an auxiliary persona reconstruction task. In this paper, we introduce 2 frameworks that adopt the proposed multi-task meta-learning approach: the Multi-Task Meta-Learning (MTML) framework, and the Alternating Multi-Task Meta-Learning (AMTML) framework. Experimental results show that utilizing MTML and AMTML results in dialogue responses with greater persona consistency.
Personalized dialogue systems are an essential step toward better human-machine interaction. Existing personalized dialogue agents rely on properly designed conversational datasets, which are mostly monolingual (e.g., English), which greatly limits the usage of conversational agents in other languages. In this paper, we propose a multi-lingual extension of Persona-Chat, namely XPersona. Our dataset includes persona conversations in six different languages other than English for building and evaluating multilingual personalized agents. We experiment with both multilingual and cross-lingual trained baselines, and evaluate them against monolingual and translation-pipeline models using both automatic and human evaluation. Experimental results show that the multilingual trained models outperform the translation-pipeline and that they are on par with the monolingual models, with the advantage of having a single model across multiple languages. On the other hand, the state-of-the-art cross-lingual trained models achieve inferior performance to the other models, showing that cross-lingual conversation modeling is a challenging task. We hope that our dataset and baselines will accelerate research in multilingual dialogue systems.
Short textual descriptions of entities provide summaries of their key attributes and have been shown to be useful sources of background knowledge for tasks such as entity linking and question answering. However, generating entity descriptions, especially for new and long-tail entities, can be challenging since relevant information is often scattered across multiple sources with varied content and style. We introduce DESCGEN: given mentions spread over multiple documents, the goal is to generate an entity summary description. DESCGEN consists of 37K entity descriptions from Wikipedia and Fandom, each paired with nine evidence documents on average. The documents were collected using a combination of entity linking and hyperlinks to the Wikipedia and Fandom entity pages, which together provide high-quality distant supervision. The resulting summaries are more abstractive than those found in existing datasets and provide a better proxy for the challenge of describing new and emerging entities. We also propose a two-stage extract-then-generate baseline and show that there exists a large gap (19.9% in ROUGE-L) between state-of-the-art models and human performance, suggesting that the data will support significant future work.
Descriptions are often provided along with recommendations to help users discovery. Recommending automatically generated music playlists (e.g. personalised playlists) introduces the problem of generating descriptions. In this paper, we propose a method for generating music playlist descriptions, which is called as music captioning. In the proposed method, audio content analysis and natural language processing are adopted to utilise the information of each track.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا