Do you want to publish a course? Click here

Lattice Structure and Convergence of a Game of Cards

50   0   0.0 ( 0 )
 Added by Ha Duong Phan
 Publication date 2000
and research's language is English
 Authors Eric Goles




Ask ChatGPT about the research

This paper is devoted to the study of the dynamics of a discrete system related to some self stabilizing protocol on a ring of processors.



rate research

Read More

Partly in service of exploring the formal basis for Georgetown Universitys AvesTerra database structure, we formalize a recursive hypergraph data structure, which we call an ubergraph.
60 - Simon Apers , Alain Sarlette , 2017
Isoperimetric inequalities form a very intuitive yet powerful characterization of the connectedness of a state space, that has proven successful in obtaining convergence bounds. Since the seventies they form an essential tool in differential geometry, graph theory and Markov chain analysis. In this paper we use isoperimetric inequalities to construct a bound on the convergence time of any local probabilistic evolution that leaves its limit distribution invariant. We illustrate how this general result leads to new bounds on convergence times beyond the explicit Markovian setting, among others on quantum dynamics.
Tree projections provide a mathematical framework that encompasses all the various (purely) structural decomposition methods that have been proposed in the literature to single out classes of nearly-acyclic (hyper)graphs, such as the tree decomposition method, which is the most powerful decomposition method on graphs, and the (generalized) hypertree decomposition method, which is its natural counterpart on arbitrary hypergraphs. The paper analyzes this framework, by focusing in particular on minimal tree projections, that is, on tree projections without useless redundancies. First, it is shown that minimal tree projections enjoy a number of properties that are usually required for normal form decompositions in various structural decomposition methods. In particular, they enjoy the same kind of connection properties as (minimal) tree decompositions of graphs, with the result being tight in the light of the negative answer that is provided to the open question about whether they enjoy a slightly stronger notion of connection property, defined to speed-up the computation of hypertree decompositions. Second, it is shown that tree projections admit a natural game-theoretic characterization in terms of the Captain and Robber game. In this game, as for the Robber and Cops game characterizing tree decompositions, the existence of winning strategies implies the existence of monotone ones. As a special case, the Captain and Robber game can be used to characterize the generalized hypertree decomposition method, where such a game-theoretic characterization was missing and asked for. Besides their theoretical interest, these results have immediate algorithmic applications both for the general setting and for structural decomposition methods that can be recast in terms of tree projections.
A circular-arc graph is the intersection graph of arcs of a circle. It is a well-studied graph model with numerous natural applications. A certifying algorithm is an algorithm that outputs a certificate, along with its answer (be it positive or negative), where the certificate can be used to easily justify the given answer. While the recognition of circular-arc graphs has been known to be polynomial since the 1980s, no polynomial-time certifying recognition algorithm is known to date, despite such algorithms being found for many subclasses of circular-arc graphs. This is largely due to the fact that a forbidden structure characterization of circular-arc graphs is not known, even though the problem has been intensely studied since the seminal work of Klee in the 1960s. In this contribution, we settle this problem. We present the first forbidden structure characterization of circular-arc graphs. Our obstruction has the form of mutually avoiding walks in the graph. It naturally extends a similar obstruction that characterizes interval graphs. As a consequence, we give the first polynomial-time certifying algorithm for the recognition of circular-arc graphs.
151 - Xiaohan Wang , Xiaolin Wu 2007
The Hales numbered $n$-dimensional hypercube and the corresponding adjacency matrix exhibit interesting recursive structures in $n$. These structures lead to a very simple proof of the well-known bandwidth formula for hypercube, whose proof was thought to be surprisingly difficult. A related problem called hypercube antibandwidth, for which Harper proposed an algorithm, is also reexamined in the light of the above recursive structures, and a close form solution is found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا