Do you want to publish a course? Click here

Energetics of the oxidation and opening of a carbon nanotube

65   0   0.0 ( 0 )
 Added by Emilio Artacho
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply first principles calculations to study the opening of single-wall carbon nanotubes (SWNTs) by oxidation. We show that an oxygen rim can stabilize the edge of the open tube. The sublimation of CO$_2$ molecules from the rim with the subsequent closing of the tube changes from endothermic to exothermic as the tube radius increases, within the range of experimental feasible radii. We also obtain the energies for opening the tube at the cap and at the wall, the latter being significantly less favorable.



rate research

Read More

146 - A. Misra , C. Daraio 2008
We report on the nano-electron beam assisted fabrication of atomically sharp iron-based tips and on the creation of a nano-soldering iron for nano-interconnects using Fe-filled multiwalled carbon nanotubes (MWCNTs). High energy electron beam machining has been proven a powerful tool to modify desired nanostructures for technological applications and to form molecular junctions and interconnections between carbon nanotubes. Recent studies showed the high degree of complexity in the creation of direct interconnections between multiwalled and CNTs having dissimilar diameters. Our technique allows for carving a MWCNT into a nanosoldering iron that was demonstrated capable of joining two separated halves of a tube. This approach could easily be extended to the interconnection of two largely dissimilar CNTs, between a CNT and a nanowire or between two nanowires.
Using the first-principles spin density functional approach, we have studied magnetism of a new type of all-carbon nanomaterials, i.e., the carbon nanowires inserted into the single-walled carbon nanotubes. It is found that if the 1D carbon nanowire density is not too higher, the ferromagnetic ground state will be more stable than the antiferromagnetic one, which is caused by weak coupling between the 1D carbon nanowire and the single-walled carbon nanotube. Also, both dimerization of the carbon nanowire and carbon vacancy on the tube-wall are found to enhance the magnetic moment of the composite.
94 - S. Reich , L. Li , 2005
We present a detailed study of the geometry, structure and energetics of carbon nanotube caps. We show that the structure of a cap uniquely determines the chirality of the nanotube that can be attached to it. The structure of the cap is specified in a geometrical way by defining the position of six pentagons on a hexagonal lattice. Moving one (or more) pentagons systematically creates caps for other nanotube chiralities. For the example of the (10,0) tube we study the formation energy of different nanotube caps using ab-initio calculations. The caps with isolated pentagons have an average formation energy 0.29+/-0.01eV/atom. A pair of adjacent pentagons requires a much larger formation energy of 1.5eV. We show that the formation energy of adjacent pentagon pairs explains the diameter distribution in small-diameter nanotube samples grown by chemical vapor deposition.
Linear carbon chains (LCCs) have been shown to grow inside double-walled carbon nanotubes (DWCNTs) but isolating them from this hosting material represents one of the most challenging tasks towards applications. Herein we report the extraction and separation of LCCs inside single-wall carbon nanotubes (LCCs@SWCNTs) extracted from a double walled host LCCs@DWCNTs by applying a combined tip-ultrasonic and density gradient ultracentrifugation (DGU) process. High-resolution transmission electron microscopy (HRTEM), optical absorption, and Raman spectroscopy show that not only short LCCs but clearly long LCCs (LLCCs) can be extracted and separated from the host. Moreover, the LLCCs can even be condensed by DGU. The Raman spectral frequency of LCCs remains almost unchanged regardless of the presence of the outer tube of the DWCNTs. This suggests that the major importance of the outer tubes is making the whole synthesis viable. We have also been able to observe the interaction between the LCCs and the inner tubes of DWCNTs, playing a major role in modifying the optical properties of LCCs. Our extraction method suggests the possibility towards the complete isolation of LCCs from CNTs.
We describe a film of highly-aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotube axis. From the data we calculated the reduced linear dichrosim to be 3, corresponding to a nematic order parameter of 1, which demonstrates nearly perfect alignment as well as intrinsically anisotropic terahertz response of single-walled carbon nanotubes in the film.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا